# Copyright 2025 StepFun Inc. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # ============================================================================== import torch from einops import rearrange from torch import nn from torch.nn import functional as F from tqdm import tqdm from einops import repeat class BaseGroupNorm(nn.GroupNorm): def __init__(self, num_groups, num_channels): super().__init__(num_groups=num_groups, num_channels=num_channels) def forward(self, x, zero_pad=False, **kwargs): if zero_pad: return base_group_norm_with_zero_pad(x, self, **kwargs) else: return base_group_norm(x, self, **kwargs) def base_group_norm(x, norm_layer, act_silu=False, channel_last=False): if hasattr(base_group_norm, 'spatial') and base_group_norm.spatial: assert channel_last == True x_shape = x.shape x = x.flatten(0, 1) if channel_last: # Permute to NCHW format x = x.permute(0, 3, 1, 2) out = F.group_norm(x.contiguous(), norm_layer.num_groups, norm_layer.weight, norm_layer.bias, norm_layer.eps) if act_silu: out = F.silu(out) if channel_last: # Permute back to NHWC format out = out.permute(0, 2, 3, 1) out = out.view(x_shape) else: if channel_last: # Permute to NCHW format x = x.permute(0, 3, 1, 2) out = F.group_norm(x.contiguous(), norm_layer.num_groups, norm_layer.weight, norm_layer.bias, norm_layer.eps) if act_silu: out = F.silu(out) if channel_last: # Permute back to NHWC format out = out.permute(0, 2, 3, 1) return out def base_conv2d(x, conv_layer, channel_last=False, residual=None): if channel_last: x = x.permute(0, 3, 1, 2) # NHWC to NCHW out = F.conv2d(x, conv_layer.weight, conv_layer.bias, stride=conv_layer.stride, padding=conv_layer.padding) if residual is not None: if channel_last: residual = residual.permute(0, 3, 1, 2) # NHWC to NCHW out += residual if channel_last: out = out.permute(0, 2, 3, 1) # NCHW to NHWC return out def base_conv3d(x, conv_layer, channel_last=False, residual=None, only_return_output=False): if only_return_output: size = cal_outsize(x.shape, conv_layer.weight.shape, conv_layer.stride, conv_layer.padding) return torch.empty(size, device=x.device, dtype=x.dtype) if channel_last: x = x.permute(0, 4, 1, 2, 3) # NDHWC to NCDHW out = F.conv3d(x, conv_layer.weight, conv_layer.bias, stride=conv_layer.stride, padding=conv_layer.padding) if residual is not None: if channel_last: residual = residual.permute(0, 4, 1, 2, 3) # NDHWC to NCDHW out += residual if channel_last: out = out.permute(0, 2, 3, 4, 1) # NCDHW to NDHWC return out def cal_outsize(input_sizes, kernel_sizes, stride, padding): stride_d, stride_h, stride_w = stride padding_d, padding_h, padding_w = padding dilation_d, dilation_h, dilation_w = 1, 1, 1 in_d = input_sizes[1] in_h = input_sizes[2] in_w = input_sizes[3] in_channel = input_sizes[4] kernel_d = kernel_sizes[2] kernel_h = kernel_sizes[3] kernel_w = kernel_sizes[4] out_channels = kernel_sizes[0] out_d = calc_out_(in_d, padding_d, dilation_d, kernel_d, stride_d) out_h = calc_out_(in_h, padding_h, dilation_h, kernel_h, stride_h) out_w = calc_out_(in_w, padding_w, dilation_w, kernel_w, stride_w) size = [input_sizes[0], out_d, out_h, out_w, out_channels] return size def calc_out_(in_size, padding, dilation, kernel, stride): return (in_size + 2 * padding - dilation * (kernel - 1) - 1) // stride + 1 def base_conv3d_channel_last(x, conv_layer, residual=None): in_numel = x.numel() out_numel = int(x.numel() * conv_layer.out_channels / conv_layer.in_channels) if (in_numel >= 2**30) or (out_numel >= 2**30): assert conv_layer.stride[0] == 1, "time split asks time stride = 1" B,T,H,W,C = x.shape K = conv_layer.kernel_size[0] chunks = 4 chunk_size = T // chunks if residual is None: out_nhwc = base_conv3d(x, conv_layer, channel_last=True, residual=residual, only_return_output=True) else: out_nhwc = residual assert B == 1 outs = [] for i in range(chunks): if i == chunks-1: xi = x[:1,chunk_size*i:] out_nhwci = out_nhwc[:1,chunk_size*i:] else: xi = x[:1,chunk_size*i:chunk_size*(i+1)+K-1] out_nhwci = out_nhwc[:1,chunk_size*i:chunk_size*(i+1)] if residual is not None: if i == chunks-1: ri = residual[:1,chunk_size*i:] else: ri = residual[:1,chunk_size*i:chunk_size*(i+1)] else: ri = None out_nhwci.copy_(base_conv3d(xi, conv_layer, channel_last=True, residual=ri)) else: out_nhwc = base_conv3d(x, conv_layer, channel_last=True, residual=residual) return out_nhwc class Upsample2D(nn.Module): def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose if use_conv: self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) else: assert "Not Supported" self.conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) def forward(self, x, output_size=None): assert x.shape[-1] == self.channels if self.use_conv_transpose: return self.conv(x) if output_size is None: x = F.interpolate( x.permute(0,3,1,2).to(memory_format=torch.channels_last), scale_factor=2.0, mode='nearest').permute(0,2,3,1).contiguous() else: x = F.interpolate( x.permute(0,3,1,2).to(memory_format=torch.channels_last), size=output_size, mode='nearest').permute(0,2,3,1).contiguous() # x = self.conv(x) x = base_conv2d(x, self.conv, channel_last=True) return x class Downsample2D(nn.Module): def __init__(self, channels, use_conv=False, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 if use_conv: self.conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels self.conv = nn.AvgPool2d(kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[-1] == self.channels if self.use_conv and self.padding == 0: pad = (0, 0, 0, 1, 0, 1) x = F.pad(x, pad, mode="constant", value=0) assert x.shape[-1] == self.channels # x = self.conv(x) x = base_conv2d(x, self.conv, channel_last=True) return x class CausalConv(nn.Module): def __init__(self, chan_in, chan_out, kernel_size, **kwargs ): super().__init__() if isinstance(kernel_size, int): kernel_size = kernel_size if isinstance(kernel_size, tuple) else ((kernel_size,) * 3) time_kernel_size, height_kernel_size, width_kernel_size = kernel_size self.dilation = kwargs.pop('dilation', 1) self.stride = kwargs.pop('stride', 1) if isinstance(self.stride, int): self.stride = (self.stride, 1, 1) time_pad = self.dilation * (time_kernel_size - 1) + max((1 - self.stride[0]), 0) height_pad = height_kernel_size // 2 width_pad = width_kernel_size // 2 self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) self.time_uncausal_padding = (width_pad, width_pad, height_pad, height_pad, 0, 0) self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, **kwargs) self.is_first_run = True def forward(self, x, is_init=True, residual=None): x = nn.functional.pad(x, self.time_causal_padding if is_init else self.time_uncausal_padding) x = self.conv(x) if residual is not None: x.add_(residual) return x class ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, factor: int, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.factor = factor assert out_channels * factor**3 % in_channels == 0 self.repeats = out_channels * factor**3 // in_channels def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: x = x.repeat_interleave(self.repeats, dim=1) x = x.view(x.size(0), self.out_channels, self.factor, self.factor, self.factor, x.size(2), x.size(3), x.size(4)) x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() x = x.view(x.size(0), self.out_channels, x.size(2)*self.factor, x.size(4)*self.factor, x.size(6)*self.factor) x = x[:, :, self.factor - 1:, :, :] return x class ConvPixelShuffleUpSampleLayer3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int, factor: int, ): super().__init__() self.factor = factor out_ratio = factor**3 self.conv = CausalConv( in_channels, out_channels * out_ratio, kernel_size=kernel_size ) def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: x = self.conv(x, is_init) x = self.pixel_shuffle_3d(x, self.factor) return x @staticmethod def pixel_shuffle_3d(x: torch.Tensor, factor: int) -> torch.Tensor: batch_size, channels, depth, height, width = x.size() new_channels = channels // (factor ** 3) new_depth = depth * factor new_height = height * factor new_width = width * factor x = x.view(batch_size, new_channels, factor, factor, factor, depth, height, width) x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() x = x.view(batch_size, new_channels, new_depth, new_height, new_width) x = x[:, :, factor - 1:, :, :] return x class ConvPixelUnshuffleDownSampleLayer3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int, factor: int, ): super().__init__() self.factor = factor out_ratio = factor**3 assert out_channels % out_ratio == 0 self.conv = CausalConv( in_channels, out_channels // out_ratio, kernel_size=kernel_size ) def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: x = self.conv(x, is_init) x = self.pixel_unshuffle_3d(x, self.factor) return x @staticmethod def pixel_unshuffle_3d(x: torch.Tensor, factor: int) -> torch.Tensor: pad = (0, 0, 0, 0, factor-1, 0) # (left, right, top, bottom, front, back) x = F.pad(x, pad) B, C, D, H, W = x.shape x = x.view(B, C, D // factor, factor, H // factor, factor, W // factor, factor) x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() x = x.view(B, C * factor**3, D // factor, H // factor, W // factor) return x class PixelUnshuffleChannelAveragingDownSampleLayer3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, factor: int, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.factor = factor assert in_channels * factor**3 % out_channels == 0 self.group_size = in_channels * factor**3 // out_channels def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: pad = (0, 0, 0, 0, self.factor-1, 0) # (left, right, top, bottom, front, back) x = F.pad(x, pad) B, C, D, H, W = x.shape x = x.view(B, C, D // self.factor, self.factor, H // self.factor, self.factor, W // self.factor, self.factor) x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() x = x.view(B, C * self.factor**3, D // self.factor, H // self.factor, W // self.factor) x = x.view(B, self.out_channels, self.group_size, D // self.factor, H // self.factor, W // self.factor) x = x.mean(dim=2) return x def __init__( self, in_channels: int, out_channels: int, factor: int, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.factor = factor assert in_channels * factor**3 % out_channels == 0 self.group_size = in_channels * factor**3 // out_channels def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: pad = (0, 0, 0, 0, self.factor-1, 0) # (left, right, top, bottom, front, back) x = F.pad(x, pad) B, C, D, H, W = x.shape x = x.view(B, C, D // self.factor, self.factor, H // self.factor, self.factor, W // self.factor, self.factor) x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() x = x.view(B, C * self.factor**3, D // self.factor, H // self.factor, W // self.factor) x = x.view(B, self.out_channels, self.group_size, D // self.factor, H // self.factor, W // self.factor) x = x.mean(dim=2) return x def base_group_norm_with_zero_pad(x, norm_layer, act_silu=True, pad_size=2): out_shape = list(x.shape) out_shape[1] += pad_size out = torch.empty(out_shape, dtype=x.dtype, device=x.device) out[:, pad_size:] = base_group_norm(x, norm_layer, act_silu=act_silu, channel_last=True) out[:, :pad_size] = 0 return out class CausalConvChannelLast(CausalConv): def __init__(self, chan_in, chan_out, kernel_size, **kwargs ): super().__init__( chan_in, chan_out, kernel_size, **kwargs) self.time_causal_padding = (0, 0) + self.time_causal_padding self.time_uncausal_padding = (0, 0) + self.time_uncausal_padding def forward(self, x, is_init=True, residual=None): if self.is_first_run: self.is_first_run = False # self.conv.weight = nn.Parameter(self.conv.weight.permute(0,2,3,4,1).contiguous()) x = nn.functional.pad(x, self.time_causal_padding if is_init else self.time_uncausal_padding) x = base_conv3d_channel_last(x, self.conv, residual=residual) return x class CausalConvAfterNorm(CausalConv): def __init__(self, chan_in, chan_out, kernel_size, **kwargs ): super().__init__( chan_in, chan_out, kernel_size, **kwargs) if self.time_causal_padding == (1, 1, 1, 1, 2, 0): self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, padding=(0, 1, 1), **kwargs) else: self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, **kwargs) self.is_first_run = True def forward(self, x, is_init=True, residual=None): if self.is_first_run: self.is_first_run = False if self.time_causal_padding == (1, 1, 1, 1, 2, 0): pass else: x = nn.functional.pad(x, self.time_causal_padding).contiguous() x = base_conv3d_channel_last(x, self.conv, residual=residual) return x class AttnBlock(nn.Module): def __init__(self, in_channels ): super().__init__() self.norm = BaseGroupNorm(num_groups=32, num_channels=in_channels) self.q = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) self.k = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) self.v = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) self.proj_out = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) def attention(self, x, is_init=True): x = self.norm(x, act_silu=False, channel_last=True) q = self.q(x, is_init) k = self.k(x, is_init) v = self.v(x, is_init) b, t, h, w, c = q.shape q, k, v = map(lambda x: rearrange(x, "b t h w c -> b 1 (t h w) c"), (q, k, v)) x = nn.functional.scaled_dot_product_attention(q, k, v, is_causal=True) x = rearrange(x, "b 1 (t h w) c -> b t h w c", t=t, h=h, w=w) return x def forward(self, x): x = x.permute(0,2,3,4,1).contiguous() h = self.attention(x) x = self.proj_out(h, residual=x) x = x.permute(0,4,1,2,3) return x class Resnet3DBlock(nn.Module): def __init__(self, in_channels, out_channels=None, temb_channels=512, conv_shortcut=False, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.norm1 = BaseGroupNorm(num_groups=32, num_channels=in_channels) self.conv1 = CausalConvAfterNorm(in_channels, out_channels, kernel_size=3) if temb_channels > 0: self.temb_proj = nn.Linear(temb_channels, out_channels) self.norm2 = BaseGroupNorm(num_groups=32, num_channels=out_channels) self.conv2 = CausalConvAfterNorm(out_channels, out_channels, kernel_size=3) assert conv_shortcut is False self.use_conv_shortcut = conv_shortcut if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = CausalConvAfterNorm(in_channels, out_channels, kernel_size=3) else: self.nin_shortcut = CausalConvAfterNorm(in_channels, out_channels, kernel_size=1) def forward(self, x, temb=None, is_init=True): x = x.permute(0,2,3,4,1).contiguous() h = self.norm1(x, zero_pad=True, act_silu=True, pad_size=2) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nn.functional.silu(temb))[:, :, None, None] x = self.nin_shortcut(x) if self.in_channels != self.out_channels else x h = self.norm2(h, zero_pad=True, act_silu=True, pad_size=2) x = self.conv2(h, residual=x) x = x.permute(0,4,1,2,3) return x class Downsample3D(nn.Module): def __init__(self, in_channels, with_conv, stride ): super().__init__() self.with_conv = with_conv if with_conv: self.conv = CausalConv(in_channels, in_channels, kernel_size=3, stride=stride) def forward(self, x, is_init=True): if self.with_conv: x = self.conv(x, is_init) else: x = nn.functional.avg_pool3d(x, kernel_size=2, stride=2) return x class VideoEncoder(nn.Module): def __init__(self, ch=32, ch_mult=(4, 8, 16, 16), num_res_blocks=2, in_channels=3, z_channels=16, double_z=True, down_sampling_layer=[1, 2], resamp_with_conv=True, version=1, ): super().__init__() temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks # downsampling self.conv_in = CausalConv(in_channels, ch, kernel_size=3) self.down_sampling_layer = down_sampling_layer in_ch_mult = (1,) + tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( Resnet3DBlock(in_channels=block_in, out_channels=block_out, temb_channels=temb_ch)) block_in = block_out down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: if i_level in self.down_sampling_layer: down.downsample = Downsample3D(block_in, resamp_with_conv, stride=(2, 2, 2)) else: down.downsample = Downsample2D(block_in, resamp_with_conv, padding=0) #DIFF self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) # end self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in) self.version = version if version == 2: channels = 4 * z_channels * 2 ** 3 self.conv_patchify = ConvPixelUnshuffleDownSampleLayer3D(block_in, channels, kernel_size=3, factor=2) self.shortcut_pathify = PixelUnshuffleChannelAveragingDownSampleLayer3D(block_in, channels, 2) self.shortcut_out = PixelUnshuffleChannelAveragingDownSampleLayer3D(channels, 2 * z_channels if double_z else z_channels, 1) self.conv_out = CausalConvChannelLast(channels, 2 * z_channels if double_z else z_channels, kernel_size=3) else: self.conv_out = CausalConvAfterNorm(block_in, 2 * z_channels if double_z else z_channels, kernel_size=3) @torch.inference_mode() def forward(self, x, video_frame_num, is_init=True): # timestep embedding temb = None t = video_frame_num # downsampling h = self.conv_in(x, is_init) # make it real channel last, but behave like normal layout h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](h, temb, is_init) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) if i_level != self.num_resolutions - 1: if isinstance(self.down[i_level].downsample, Downsample2D): _, _, t, _, _ = h.shape h = rearrange(h, "b c t h w -> (b t) h w c", t=t) h = self.down[i_level].downsample(h) h = rearrange(h, "(b t) h w c -> b c t h w", t=t) else: h = self.down[i_level].downsample(h, is_init) h = self.mid.block_1(h, temb, is_init) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb, is_init) h = h.permute(0,2,3,4,1).contiguous() # b c l h w -> b l h w c if self.version == 2: h = base_group_norm(h, self.norm_out, act_silu=True, channel_last=True) h = h.permute(0,4,1,2,3).contiguous() shortcut = self.shortcut_pathify(h, is_init) h = self.conv_patchify(h, is_init) h = h.add_(shortcut) shortcut = self.shortcut_out(h, is_init).permute(0,2,3,4,1) h = self.conv_out(h.permute(0,2,3,4,1).contiguous(), is_init) h = h.add_(shortcut) else: h = base_group_norm_with_zero_pad(h, self.norm_out, act_silu=True, pad_size=2) h = self.conv_out(h, is_init) h = h.permute(0,4,1,2,3) # b l h w c -> b c l h w h = rearrange(h, "b c t h w -> b t c h w") return h class Res3DBlockUpsample(nn.Module): def __init__(self, input_filters, num_filters, down_sampling_stride, down_sampling=False ): super().__init__() self.input_filters = input_filters self.num_filters = num_filters self.act_ = nn.SiLU(inplace=True) self.conv1 = CausalConvChannelLast(num_filters, num_filters, kernel_size=[3, 3, 3]) self.norm1 = BaseGroupNorm(32, num_filters) self.conv2 = CausalConvChannelLast(num_filters, num_filters, kernel_size=[3, 3, 3]) self.norm2 = BaseGroupNorm(32, num_filters) self.down_sampling = down_sampling if down_sampling: self.down_sampling_stride = down_sampling_stride else: self.down_sampling_stride = [1, 1, 1] if num_filters != input_filters or down_sampling: self.conv3 = CausalConvChannelLast(input_filters, num_filters, kernel_size=[1, 1, 1], stride=self.down_sampling_stride) self.norm3 = BaseGroupNorm(32, num_filters) def forward(self, x, is_init=False): x = x.permute(0,2,3,4,1).contiguous() residual = x h = self.conv1(x, is_init) h = self.norm1(h, act_silu=True, channel_last=True) h = self.conv2(h, is_init) h = self.norm2(h, act_silu=False, channel_last=True) if self.down_sampling or self.num_filters != self.input_filters: x = self.conv3(x, is_init) x = self.norm3(x, act_silu=False, channel_last=True) h.add_(x) h = self.act_(h) if residual is not None: h.add_(residual) h = h.permute(0,4,1,2,3) return h class Upsample3D(nn.Module): def __init__(self, in_channels, scale_factor=2 ): super().__init__() self.scale_factor = scale_factor self.conv3d = Res3DBlockUpsample(input_filters=in_channels, num_filters=in_channels, down_sampling_stride=(1, 1, 1), down_sampling=False) def forward(self, x, is_init=True, is_split=True): b, c, t, h, w = x.shape # x = x.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3).to(memory_format=torch.channels_last_3d) if is_split: split_size = c // 8 x_slices = torch.split(x, split_size, dim=1) x = [nn.functional.interpolate(x, scale_factor=self.scale_factor) for x in x_slices] x = torch.cat(x, dim=1) else: x = nn.functional.interpolate(x, scale_factor=self.scale_factor) x = self.conv3d(x, is_init) return x class VideoDecoder(nn.Module): def __init__(self, ch=128, z_channels=16, out_channels=3, ch_mult=(1, 2, 4, 4), num_res_blocks=2, temporal_up_layers=[2, 3], temporal_downsample=4, resamp_with_conv=True, version=1, ): super().__init__() temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.temporal_downsample = temporal_downsample block_in = ch * ch_mult[self.num_resolutions - 1] self.version = version if version == 2: channels = 4 * z_channels * 2 ** 3 self.conv_in = CausalConv(z_channels, channels, kernel_size=3) self.shortcut_in = ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(z_channels, channels, 1) self.conv_unpatchify = ConvPixelShuffleUpSampleLayer3D(channels, block_in, kernel_size=3, factor=2) self.shortcut_unpathify = ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(channels, block_in, 2) else: self.conv_in = CausalConv(z_channels, block_in, kernel_size=3) # middle self.mid = nn.Module() self.mid.block_1 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) # upsampling self.up_id = len(temporal_up_layers) self.video_frame_num = 1 self.cur_video_frame_num = self.video_frame_num // 2 ** self.up_id + 1 self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append( Resnet3DBlock(in_channels=block_in, out_channels=block_out, temb_channels=temb_ch)) block_in = block_out up = nn.Module() up.block = block up.attn = attn if i_level != 0: if i_level in temporal_up_layers: up.upsample = Upsample3D(block_in) self.cur_video_frame_num = self.cur_video_frame_num * 2 else: up.upsample = Upsample2D(block_in, resamp_with_conv) self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in) self.conv_out = CausalConvAfterNorm(block_in, out_channels, kernel_size=3) @torch.inference_mode() def forward(self, z, is_init=True): z = rearrange(z, "b t c h w -> b c t h w") h = self.conv_in(z, is_init=is_init) if self.version == 2: shortcut = self.shortcut_in(z, is_init=is_init) h = h.add_(shortcut) shortcut = self.shortcut_unpathify(h, is_init=is_init) h = self.conv_unpatchify(h, is_init=is_init) h = h.add_(shortcut) temb = None h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) h = self.mid.block_1(h, temb, is_init=is_init) h = self.mid.attn_1(h) h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) h = self.mid.block_2(h, temb, is_init=is_init) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) h = self.up[i_level].block[i_block](h, temb, is_init=is_init) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: if isinstance(self.up[i_level].upsample, Upsample2D) or (hasattr(self.up[i_level].upsample, "module") and isinstance(self.up[i_level].upsample.module, Upsample2D)): B = h.size(0) h = h.permute(0,2,3,4,1).flatten(0,1) h = self.up[i_level].upsample(h) h = h.unflatten(0, (B, -1)).permute(0,4,1,2,3) else: h = self.up[i_level].upsample(h, is_init=is_init) # end h = h.permute(0,2,3,4,1) # b c l h w -> b l h w c self.norm_out.to(dtype=h.dtype, device=h.device) # To be updated h = base_group_norm_with_zero_pad(h, self.norm_out, act_silu=True, pad_size=2) h = self.conv_out(h) h = h.permute(0,4,1,2,3) if is_init: h = h[:, :, (self.temporal_downsample - 1):] return h def rms_norm(input, normalized_shape, eps=1e-6): dtype = input.dtype input = input.to(torch.float32) variance = input.pow(2).flatten(-len(normalized_shape)).mean(-1)[(...,) + (None,) * len(normalized_shape)] input = input * torch.rsqrt(variance + eps) return input.to(dtype) class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False, rms_norm_mean=False, only_return_mean=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=-3) #N,[X],C,H,W self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) self.deterministic = deterministic if self.deterministic: self.var = self.std = torch.zeros_like( self.mean, device=self.parameters.device, dtype=self.parameters.dtype) if rms_norm_mean: self.mean = rms_norm(self.mean, self.mean.size()[1:]) self.only_return_mean = only_return_mean def sample(self, generator=None): # make sure sample is on the same device # as the parameters and has same dtype sample = torch.randn( self.mean.shape, generator=generator, device=self.parameters.device) sample = sample.to(dtype=self.parameters.dtype) x = self.mean + self.std * sample if self.only_return_mean: return self.mean else: return x class StepVideoVAE(nn.Module): def __init__(self, in_channels=3, out_channels=3, z_channels=64, num_res_blocks=2, model_path=None, weight_dict={}, world_size=1, version=2, ): super().__init__() self.frame_len = 17 self.latent_len = 3 if version == 2 else 5 base_group_norm.spatial = True if version == 2 else False self.encoder = VideoEncoder( in_channels=in_channels, z_channels=z_channels, num_res_blocks=num_res_blocks, version=version, ) self.decoder = VideoDecoder( z_channels=z_channels, out_channels=out_channels, num_res_blocks=num_res_blocks, version=version, ) if model_path is not None: weight_dict = self.init_from_ckpt(model_path) if len(weight_dict) != 0: self.load_from_dict(weight_dict) self.convert_channel_last() self.world_size = world_size def init_from_ckpt(self, model_path): from safetensors import safe_open p = {} with safe_open(model_path, framework="pt", device="cpu") as f: for k in f.keys(): tensor = f.get_tensor(k) if k.startswith("decoder.conv_out."): k = k.replace("decoder.conv_out.", "decoder.conv_out.conv.") p[k] = tensor return p def load_from_dict(self, p): self.load_state_dict(p) def convert_channel_last(self): #Conv2d NCHW->NHWC pass def naive_encode(self, x, is_init_image=True): b, l, c, h, w = x.size() x = rearrange(x, 'b l c h w -> b c l h w').contiguous() z = self.encoder(x, l, True) # 下采样[1, 4, 8, 16, 16] return z @torch.inference_mode() def encode(self, x): # b (nc cf) c h w -> (b nc) cf c h w -> encode -> (b nc) cf c h w -> b (nc cf) c h w chunks = list(x.split(self.frame_len, dim=1)) for i in range(len(chunks)): chunks[i] = self.naive_encode(chunks[i], True) z = torch.cat(chunks, dim=1) posterior = DiagonalGaussianDistribution(z) return posterior.sample() def decode_naive(self, z, is_init=True): z = z.to(next(self.decoder.parameters()).dtype) dec = self.decoder(z, is_init) return dec @torch.inference_mode() def decode_original(self, z): # b (nc cf) c h w -> (b nc) cf c h w -> decode -> (b nc) c cf h w -> b (nc cf) c h w chunks = list(z.split(self.latent_len, dim=1)) if self.world_size > 1: chunks_total_num = len(chunks) max_num_per_rank = (chunks_total_num + self.world_size - 1) // self.world_size rank = torch.distributed.get_rank() chunks_ = chunks[max_num_per_rank * rank : max_num_per_rank * (rank + 1)] if len(chunks_) < max_num_per_rank: chunks_.extend(chunks[:max_num_per_rank-len(chunks_)]) chunks = chunks_ for i in range(len(chunks)): chunks[i] = self.decode_naive(chunks[i], True).permute(0,2,1,3,4) x = torch.cat(chunks, dim=1) if self.world_size > 1: x_ = torch.empty([x.size(0), (self.world_size * max_num_per_rank) * self.frame_len, *x.shape[2:]], dtype=x.dtype, device=x.device) torch.distributed.all_gather_into_tensor(x_, x) x = x_[:, : chunks_total_num * self.frame_len] x = self.mix(x) return x def mix(self, x, smooth_scale = 0.6): remain_scale = smooth_scale mix_scale = 1. - remain_scale front = slice(self.frame_len - 1, x.size(1) - 1, self.frame_len) back = slice(self.frame_len, x.size(1), self.frame_len) x[:, front], x[:, back] = ( x[:, front] * remain_scale + x[:, back] * mix_scale, x[:, back] * remain_scale + x[:, front] * mix_scale ) return x def single_decode(self, hidden_states, device): chunks = list(hidden_states.split(self.latent_len, dim=1)) for i in range(len(chunks)): chunks[i] = self.decode_naive(chunks[i].to(device), True).permute(0,2,1,3,4).cpu() x = torch.cat(chunks, dim=1) return x def build_1d_mask(self, length, left_bound, right_bound, border_width): x = torch.ones((length,)) if not left_bound: x[:border_width] = (torch.arange(border_width) + 1) / border_width if not right_bound: x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) return x def build_mask(self, data, is_bound, border_width): _, _, _, H, W = data.shape h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0]) w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1]) h = repeat(h, "H -> H W", H=H, W=W) w = repeat(w, "W -> H W", H=H, W=W) mask = torch.stack([h, w]).min(dim=0).values mask = rearrange(mask, "H W -> 1 1 1 H W") return mask def tiled_decode(self, hidden_states, device, tile_size=(34, 34), tile_stride=(16, 16)): B, T, C, H, W = hidden_states.shape size_h, size_w = tile_size stride_h, stride_w = tile_stride # Split tasks tasks = [] for t in range(0, T, 3): for h in range(0, H, stride_h): if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue for w in range(0, W, stride_w): if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue t_, h_, w_ = t + 3, h + size_h, w + size_w tasks.append((t, t_, h, h_, w, w_)) # Run data_device = "cpu" computation_device = device weight = torch.zeros((1, 1, T//3*17, H * 16, W * 16), dtype=hidden_states.dtype, device=data_device) values = torch.zeros((B, 3, T//3*17, H * 16, W * 16), dtype=hidden_states.dtype, device=data_device) for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"): hidden_states_batch = hidden_states[:, t:t_, :, h:h_, w:w_].to(computation_device) hidden_states_batch = self.decode_naive(hidden_states_batch, True).to(data_device) mask = self.build_mask( hidden_states_batch, is_bound=(h==0, h_>=H, w==0, w_>=W), border_width=((size_h - stride_h) * 16, (size_w - stride_w) * 16) ).to(dtype=hidden_states.dtype, device=data_device) target_t = t // 3 * 17 target_h = h * 16 target_w = w * 16 values[ :, :, target_t: target_t + hidden_states_batch.shape[2], target_h: target_h + hidden_states_batch.shape[3], target_w: target_w + hidden_states_batch.shape[4], ] += hidden_states_batch * mask weight[ :, :, target_t: target_t + hidden_states_batch.shape[2], target_h: target_h + hidden_states_batch.shape[3], target_w: target_w + hidden_states_batch.shape[4], ] += mask return values / weight def decode(self, hidden_states, device, tiled=False, tile_size=(34, 34), tile_stride=(16, 16), smooth_scale=0.6): hidden_states = hidden_states.to("cpu") if tiled: video = self.tiled_decode(hidden_states, device, tile_size, tile_stride) else: video = self.single_decode(hidden_states, device) video = self.mix(video, smooth_scale=smooth_scale) return video @staticmethod def state_dict_converter(): return StepVideoVAEStateDictConverter() class StepVideoVAEStateDictConverter: def __init__(self): super().__init__() def from_diffusers(self, state_dict): return self.from_civitai(state_dict) def from_civitai(self, state_dict): state_dict_ = {} for name, param in state_dict.items(): if name.startswith("decoder.conv_out."): name_ = name.replace("decoder.conv_out.", "decoder.conv_out.conv.") else: name_ = name state_dict_[name_] = param return state_dict_