from .svd_image_encoder import SVDImageEncoder from .sd3_dit import RMSNorm from transformers import CLIPImageProcessor import torch class MLPProjModel(torch.nn.Module): def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): super().__init__() self.cross_attention_dim = cross_attention_dim self.num_tokens = num_tokens self.proj = torch.nn.Sequential( torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), torch.nn.GELU(), torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), ) self.norm = torch.nn.LayerNorm(cross_attention_dim) def forward(self, id_embeds): x = self.proj(id_embeds) x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) x = self.norm(x) return x class IpAdapterModule(torch.nn.Module): def __init__(self, num_attention_heads, attention_head_dim, input_dim): super().__init__() self.num_heads = num_attention_heads self.head_dim = attention_head_dim output_dim = num_attention_heads * attention_head_dim self.to_k_ip = torch.nn.Linear(input_dim, output_dim, bias=False) self.to_v_ip = torch.nn.Linear(input_dim, output_dim, bias=False) self.norm_added_k = RMSNorm(attention_head_dim, eps=1e-5, elementwise_affine=False) def forward(self, hidden_states): batch_size = hidden_states.shape[0] # ip_k ip_k = self.to_k_ip(hidden_states) ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) ip_k = self.norm_added_k(ip_k) # ip_v ip_v = self.to_v_ip(hidden_states) ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) return ip_k, ip_v class FluxIpAdapter(torch.nn.Module): def __init__(self, num_attention_heads=24, attention_head_dim=128, cross_attention_dim=4096, num_tokens=128, num_blocks=57): super().__init__() self.ipadapter_modules = torch.nn.ModuleList([IpAdapterModule(num_attention_heads, attention_head_dim, cross_attention_dim) for _ in range(num_blocks)]) self.image_proj = MLPProjModel(cross_attention_dim=cross_attention_dim, id_embeddings_dim=1152, num_tokens=num_tokens) self.set_adapter() def set_adapter(self): self.call_block_id = {i:i for i in range(len(self.ipadapter_modules))} def forward(self, hidden_states, scale=1.0): hidden_states = self.image_proj(hidden_states) hidden_states = hidden_states.view(1, -1, hidden_states.shape[-1]) ip_kv_dict = {} for block_id in self.call_block_id: ipadapter_id = self.call_block_id[block_id] ip_k, ip_v = self.ipadapter_modules[ipadapter_id](hidden_states) ip_kv_dict[block_id] = { "ip_k": ip_k, "ip_v": ip_v, "scale": scale } return ip_kv_dict @staticmethod def state_dict_converter(): return FluxIpAdapterStateDictConverter() class FluxIpAdapterStateDictConverter: def __init__(self): pass def from_diffusers(self, state_dict): state_dict_ = {} for name in state_dict["ip_adapter"]: name_ = 'ipadapter_modules.' + name state_dict_[name_] = state_dict["ip_adapter"][name] for name in state_dict["image_proj"]: name_ = "image_proj." + name state_dict_[name_] = state_dict["image_proj"][name] return state_dict_ def from_civitai(self, state_dict): return self.from_diffusers(state_dict)