import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange import numpy as np from tqdm import tqdm from einops import repeat class CausalConv3d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, dilation=1, pad_mode='replicate', **kwargs): super().__init__() self.pad_mode = pad_mode self.time_causal_padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0 ) # W, H, T self.conv = nn.Conv3d(in_channel, out_channel, kernel_size, stride=stride, dilation=dilation, **kwargs) def forward(self, x): x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) return self.conv(x) class UpsampleCausal3D(nn.Module): def __init__(self, channels, use_conv=False, out_channels=None, kernel_size=None, bias=True, upsample_factor=(2, 2, 2)): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.upsample_factor = upsample_factor self.conv = None if use_conv: kernel_size = 3 if kernel_size is None else kernel_size self.conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias) def forward(self, hidden_states): # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # interpolate B, C, T, H, W = hidden_states.shape first_h, other_h = hidden_states.split((1, T - 1), dim=2) if T > 1: other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest") first_h = F.interpolate(first_h.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest").unsqueeze(2) hidden_states = torch.cat((first_h, other_h), dim=2) if T > 1 else first_h # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) if self.conv: hidden_states = self.conv(hidden_states) return hidden_states class ResnetBlockCausal3D(nn.Module): def __init__(self, in_channels, out_channels=None, dropout=0.0, groups=32, eps=1e-6, conv_shortcut_bias=True): super().__init__() self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1) self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True) self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, stride=1) self.dropout = nn.Dropout(dropout) self.nonlinearity = nn.SiLU() self.conv_shortcut = None if in_channels != out_channels: self.conv_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, bias=conv_shortcut_bias) def forward(self, input_tensor): hidden_states = input_tensor # conv1 hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) # conv2 hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) # shortcut if self.conv_shortcut is not None: input_tensor = (self.conv_shortcut(input_tensor)) # shortcut and scale output_tensor = input_tensor + hidden_states return output_tensor def prepare_causal_attention_mask(n_frame, n_hw, dtype, device, batch_size=None): seq_len = n_frame * n_hw mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device) for i in range(seq_len): i_frame = i // n_hw mask[i, :(i_frame + 1) * n_hw] = 0 if batch_size is not None: mask = mask.unsqueeze(0).expand(batch_size, -1, -1) return mask class Attention(nn.Module): def __init__(self, in_channels, num_heads, head_dim, num_groups=32, dropout=0.0, eps=1e-6, bias=True, residual_connection=True): super().__init__() self.num_heads = num_heads self.head_dim = head_dim self.residual_connection = residual_connection dim_inner = head_dim * num_heads self.group_norm = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True) self.to_q = nn.Linear(in_channels, dim_inner, bias=bias) self.to_k = nn.Linear(in_channels, dim_inner, bias=bias) self.to_v = nn.Linear(in_channels, dim_inner, bias=bias) self.to_out = nn.Sequential(nn.Linear(dim_inner, in_channels, bias=bias), nn.Dropout(dropout)) def forward(self, input_tensor, attn_mask=None): hidden_states = self.group_norm(input_tensor.transpose(1, 2)).transpose(1, 2) batch_size = hidden_states.shape[0] q = self.to_q(hidden_states) k = self.to_k(hidden_states) v = self.to_v(hidden_states) q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) if attn_mask is not None: attn_mask = attn_mask.view(batch_size, self.num_heads, -1, attn_mask.shape[-1]) hidden_states = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) hidden_states = self.to_out(hidden_states) if self.residual_connection: output_tensor = input_tensor + hidden_states return output_tensor class UNetMidBlockCausal3D(nn.Module): def __init__(self, in_channels, dropout=0.0, num_layers=1, eps=1e-6, num_groups=32, attention_head_dim=None): super().__init__() resnets = [ ResnetBlockCausal3D( in_channels=in_channels, out_channels=in_channels, dropout=dropout, groups=num_groups, eps=eps, ) ] attentions = [] attention_head_dim = attention_head_dim or in_channels for _ in range(num_layers): attentions.append( Attention( in_channels, num_heads=in_channels // attention_head_dim, head_dim=attention_head_dim, num_groups=num_groups, dropout=dropout, eps=eps, bias=True, residual_connection=True, )) resnets.append( ResnetBlockCausal3D( in_channels=in_channels, out_channels=in_channels, dropout=dropout, groups=num_groups, eps=eps, )) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states): hidden_states = self.resnets[0](hidden_states) for attn, resnet in zip(self.attentions, self.resnets[1:]): B, C, T, H, W = hidden_states.shape hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c") attn_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B) hidden_states = attn(hidden_states, attn_mask=attn_mask) hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W) hidden_states = resnet(hidden_states) return hidden_states class UpDecoderBlockCausal3D(nn.Module): def __init__( self, in_channels, out_channels, dropout=0.0, num_layers=1, eps=1e-6, num_groups=32, add_upsample=True, upsample_scale_factor=(2, 2, 2), ): super().__init__() resnets = [] for i in range(num_layers): cur_in_channel = in_channels if i == 0 else out_channels resnets.append( ResnetBlockCausal3D( in_channels=cur_in_channel, out_channels=out_channels, groups=num_groups, dropout=dropout, eps=eps, )) self.resnets = nn.ModuleList(resnets) self.upsamplers = None if add_upsample: self.upsamplers = nn.ModuleList([ UpsampleCausal3D( out_channels, use_conv=True, out_channels=out_channels, upsample_factor=upsample_scale_factor, ) ]) def forward(self, hidden_states): for resnet in self.resnets: hidden_states = resnet(hidden_states) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states class DecoderCausal3D(nn.Module): def __init__( self, in_channels=16, out_channels=3, eps=1e-6, dropout=0.0, block_out_channels=[128, 256, 512, 512], layers_per_block=2, num_groups=32, time_compression_ratio=4, spatial_compression_ratio=8, gradient_checkpointing=False, ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1) self.up_blocks = nn.ModuleList([]) # mid self.mid_block = UNetMidBlockCausal3D( in_channels=block_out_channels[-1], dropout=dropout, eps=eps, num_groups=num_groups, attention_head_dim=block_out_channels[-1], ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i in range(len(block_out_channels)): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio)) num_time_upsample_layers = int(np.log2(time_compression_ratio)) add_spatial_upsample = bool(i < num_spatial_upsample_layers) add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block) upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1) upsample_scale_factor_T = (2,) if add_time_upsample else (1,) upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW) up_block = UpDecoderBlockCausal3D( in_channels=prev_output_channel, out_channels=output_channel, dropout=dropout, num_layers=layers_per_block + 1, eps=eps, num_groups=num_groups, add_upsample=bool(add_spatial_upsample or add_time_upsample), upsample_scale_factor=upsample_scale_factor, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups, eps=eps) self.conv_act = nn.SiLU() self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3) self.gradient_checkpointing = gradient_checkpointing def forward(self, hidden_states): hidden_states = self.conv_in(hidden_states) if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward # middle hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), hidden_states, use_reentrant=False, ) # up for up_block in self.up_blocks: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), hidden_states, use_reentrant=False, ) else: # middle hidden_states = self.mid_block(hidden_states) # up for up_block in self.up_blocks: hidden_states = up_block(hidden_states) # post-process hidden_states = self.conv_norm_out(hidden_states) hidden_states = self.conv_act(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class HunyuanVideoVAEDecoder(nn.Module): def __init__( self, in_channels=16, out_channels=3, eps=1e-6, dropout=0.0, block_out_channels=[128, 256, 512, 512], layers_per_block=2, num_groups=32, time_compression_ratio=4, spatial_compression_ratio=8, gradient_checkpointing=False, ): super().__init__() self.decoder = DecoderCausal3D( in_channels=in_channels, out_channels=out_channels, eps=eps, dropout=dropout, block_out_channels=block_out_channels, layers_per_block=layers_per_block, num_groups=num_groups, time_compression_ratio=time_compression_ratio, spatial_compression_ratio=spatial_compression_ratio, gradient_checkpointing=gradient_checkpointing, ) self.post_quant_conv = nn.Conv3d(in_channels, in_channels, kernel_size=1) self.scaling_factor = 0.476986 def forward(self, latents): latents = latents / self.scaling_factor latents = self.post_quant_conv(latents) dec = self.decoder(latents) return dec def build_1d_mask(self, length, left_bound, right_bound, border_width): x = torch.ones((length,)) if not left_bound: x[:border_width] = (torch.arange(border_width) + 1) / border_width if not right_bound: x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) return x def build_mask(self, data, is_bound, border_width): _, _, T, H, W = data.shape t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0]) h = self.build_1d_mask(H, is_bound[2], is_bound[3], border_width[1]) w = self.build_1d_mask(W, is_bound[4], is_bound[5], border_width[2]) t = repeat(t, "T -> T H W", T=T, H=H, W=W) h = repeat(h, "H -> T H W", T=T, H=H, W=W) w = repeat(w, "W -> T H W", T=T, H=H, W=W) mask = torch.stack([t, h, w]).min(dim=0).values mask = rearrange(mask, "T H W -> 1 1 T H W") return mask def tile_forward(self, hidden_states, tile_size, tile_stride): B, C, T, H, W = hidden_states.shape size_t, size_h, size_w = tile_size stride_t, stride_h, stride_w = tile_stride # Split tasks tasks = [] for t in range(0, T, stride_t): if (t-stride_t >= 0 and t-stride_t+size_t >= T): continue for h in range(0, H, stride_h): if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue for w in range(0, W, stride_w): if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue t_, h_, w_ = t + size_t, h + size_h, w + size_w tasks.append((t, t_, h, h_, w, w_)) # Run torch_dtype = self.post_quant_conv.weight.dtype data_device = hidden_states.device computation_device = self.post_quant_conv.weight.device weight = torch.zeros((1, 1, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device) values = torch.zeros((B, 3, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device) for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"): hidden_states_batch = hidden_states[:, :, t:t_, h:h_, w:w_].to(computation_device) hidden_states_batch = self.forward(hidden_states_batch).to(data_device) if t > 0: hidden_states_batch = hidden_states_batch[:, :, 1:] mask = self.build_mask( hidden_states_batch, is_bound=(t==0, t_>=T, h==0, h_>=H, w==0, w_>=W), border_width=((size_t - stride_t) * 4, (size_h - stride_h) * 8, (size_w - stride_w) * 8) ).to(dtype=torch_dtype, device=data_device) target_t = 0 if t==0 else t * 4 + 1 target_h = h * 8 target_w = w * 8 values[ :, :, target_t: target_t + hidden_states_batch.shape[2], target_h: target_h + hidden_states_batch.shape[3], target_w: target_w + hidden_states_batch.shape[4], ] += hidden_states_batch * mask weight[ :, :, target_t: target_t + hidden_states_batch.shape[2], target_h: target_h + hidden_states_batch.shape[3], target_w: target_w + hidden_states_batch.shape[4], ] += mask return values / weight def decode_video(self, latents, tile_size=(17, 32, 32), tile_stride=(12, 24, 24)): latents = latents.to(self.post_quant_conv.weight.dtype) return self.tile_forward(latents, tile_size=tile_size, tile_stride=tile_stride) @staticmethod def state_dict_converter(): return HunyuanVideoVAEDecoderStateDictConverter() class HunyuanVideoVAEDecoderStateDictConverter: def __init__(self): pass def from_diffusers(self, state_dict): state_dict_ = {} for name in state_dict: if name.startswith('decoder.') or name.startswith('post_quant_conv.'): state_dict_[name] = state_dict[name] return state_dict_