# Copyright 2025 StepFun Inc. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # ============================================================================== from typing import Dict, Optional, Tuple, Union, List import torch, math from torch import nn from einops import rearrange, repeat from tqdm import tqdm class RMSNorm(nn.Module): def __init__( self, dim: int, elementwise_affine=True, eps: float = 1e-6, device=None, dtype=None, ): """ Initialize the RMSNorm normalization layer. Args: dim (int): The dimension of the input tensor. eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. Attributes: eps (float): A small value added to the denominator for numerical stability. weight (nn.Parameter): Learnable scaling parameter. """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.eps = eps if elementwise_affine: self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs)) def _norm(self, x): """ Apply the RMSNorm normalization to the input tensor. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The normalized tensor. """ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): """ Forward pass through the RMSNorm layer. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The output tensor after applying RMSNorm. """ output = self._norm(x.float()).type_as(x) if hasattr(self, "weight"): output = output * self.weight return output ACTIVATION_FUNCTIONS = { "swish": nn.SiLU(), "silu": nn.SiLU(), "mish": nn.Mish(), "gelu": nn.GELU(), "relu": nn.ReLU(), } def get_activation(act_fn: str) -> nn.Module: """Helper function to get activation function from string. Args: act_fn (str): Name of activation function. Returns: nn.Module: Activation function. """ act_fn = act_fn.lower() if act_fn in ACTIVATION_FUNCTIONS: return ACTIVATION_FUNCTIONS[act_fn] else: raise ValueError(f"Unsupported activation function: {act_fn}") def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange( start=0, end=half_dim, dtype=torch.float32, device=timesteps.device ) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb class Timesteps(nn.Module): def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift def forward(self, timesteps): t_emb = get_timestep_embedding( timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, ) return t_emb class TimestepEmbedding(nn.Module): def __init__( self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None, post_act_fn: Optional[str] = None, cond_proj_dim=None, sample_proj_bias=True ): super().__init__() linear_cls = nn.Linear self.linear_1 = linear_cls( in_channels, time_embed_dim, bias=sample_proj_bias, ) if cond_proj_dim is not None: self.cond_proj = linear_cls( cond_proj_dim, in_channels, bias=False, ) else: self.cond_proj = None self.act = get_activation(act_fn) if out_dim is not None: time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim self.linear_2 = linear_cls( time_embed_dim, time_embed_dim_out, bias=sample_proj_bias, ) if post_act_fn is None: self.post_act = None else: self.post_act = get_activation(post_act_fn) def forward(self, sample, condition=None): if condition is not None: sample = sample + self.cond_proj(condition) sample = self.linear_1(sample) if self.act is not None: sample = self.act(sample) sample = self.linear_2(sample) if self.post_act is not None: sample = self.post_act(sample) return sample class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): super().__init__() self.outdim = size_emb_dim self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.use_additional_conditions = use_additional_conditions if self.use_additional_conditions: self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) self.nframe_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.fps_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) def forward(self, timestep, resolution=None, nframe=None, fps=None): hidden_dtype = timestep.dtype timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) if self.use_additional_conditions: batch_size = timestep.shape[0] resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype) resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1) nframe_emb = self.additional_condition_proj(nframe.flatten()).to(hidden_dtype) nframe_emb = self.nframe_embedder(nframe_emb).reshape(batch_size, -1) conditioning = timesteps_emb + resolution_emb + nframe_emb if fps is not None: fps_emb = self.additional_condition_proj(fps.flatten()).to(hidden_dtype) fps_emb = self.fps_embedder(fps_emb).reshape(batch_size, -1) conditioning = conditioning + fps_emb else: conditioning = timesteps_emb return conditioning class AdaLayerNormSingle(nn.Module): r""" Norm layer adaptive layer norm single (adaLN-single). As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). Parameters: embedding_dim (`int`): The size of each embedding vector. use_additional_conditions (`bool`): To use additional conditions for normalization or not. """ def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, time_step_rescale=1000): super().__init__() self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( embedding_dim, size_emb_dim=embedding_dim // 2, use_additional_conditions=use_additional_conditions ) self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) self.time_step_rescale = time_step_rescale ## timestep usually in [0, 1], we rescale it to [0,1000] for stability def forward( self, timestep: torch.Tensor, added_cond_kwargs: Dict[str, torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: embedded_timestep = self.emb(timestep*self.time_step_rescale, **added_cond_kwargs) out = self.linear(self.silu(embedded_timestep)) return out, embedded_timestep class PixArtAlphaTextProjection(nn.Module): """ Projects caption embeddings. Also handles dropout for classifier-free guidance. Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py """ def __init__(self, in_features, hidden_size): super().__init__() self.linear_1 = nn.Linear( in_features, hidden_size, bias=True, ) self.act_1 = nn.GELU(approximate="tanh") self.linear_2 = nn.Linear( hidden_size, hidden_size, bias=True, ) def forward(self, caption): hidden_states = self.linear_1(caption) hidden_states = self.act_1(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states class Attention(nn.Module): def __init__(self): super().__init__() def attn_processor(self, attn_type): if attn_type == 'torch': return self.torch_attn_func elif attn_type == 'parallel': return self.parallel_attn_func else: raise Exception('Not supported attention type...') def torch_attn_func( self, q, k, v, attn_mask=None, causal=False, drop_rate=0.0, **kwargs ): if attn_mask is not None and attn_mask.dtype != torch.bool: attn_mask = attn_mask.to(q.dtype) if attn_mask is not None and attn_mask.ndim == 3: ## no head n_heads = q.shape[2] attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) q, k, v = map(lambda x: rearrange(x, 'b s h d -> b h s d'), (q, k, v)) if attn_mask is not None: attn_mask = attn_mask.to(q.device) x = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal ) x = rearrange(x, 'b h s d -> b s h d') return x class RoPE1D: def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0): self.base = freq self.F0 = F0 self.scaling_factor = scaling_factor self.cache = {} def get_cos_sin(self, D, seq_len, device, dtype): if (D, seq_len, device, dtype) not in self.cache: inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) freqs = torch.cat((freqs, freqs), dim=-1) cos = freqs.cos() # (Seq, Dim) sin = freqs.sin() self.cache[D, seq_len, device, dtype] = (cos, sin) return self.cache[D, seq_len, device, dtype] @staticmethod def rotate_half(x): x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def apply_rope1d(self, tokens, pos1d, cos, sin): assert pos1d.ndim == 2 cos = torch.nn.functional.embedding(pos1d, cos)[:, :, None, :] sin = torch.nn.functional.embedding(pos1d, sin)[:, :, None, :] return (tokens * cos) + (self.rotate_half(tokens) * sin) def __call__(self, tokens, positions): """ input: * tokens: batch_size x ntokens x nheads x dim * positions: batch_size x ntokens (t position of each token) output: * tokens after applying RoPE2D (batch_size x ntokens x nheads x dim) """ D = tokens.size(3) assert positions.ndim == 2 # Batch, Seq cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype) tokens = self.apply_rope1d(tokens, positions, cos, sin) return tokens class RoPE3D(RoPE1D): def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0): super(RoPE3D, self).__init__(freq, F0, scaling_factor) self.position_cache = {} def get_mesh_3d(self, rope_positions, bsz): f, h, w = rope_positions if f"{f}-{h}-{w}" not in self.position_cache: x = torch.arange(f, device='cpu') y = torch.arange(h, device='cpu') z = torch.arange(w, device='cpu') self.position_cache[f"{f}-{h}-{w}"] = torch.cartesian_prod(x, y, z).view(1, f*h*w, 3).expand(bsz, -1, 3) return self.position_cache[f"{f}-{h}-{w}"] def __call__(self, tokens, rope_positions, ch_split, parallel=False): """ input: * tokens: batch_size x ntokens x nheads x dim * rope_positions: list of (f, h, w) output: * tokens after applying RoPE2D (batch_size x ntokens x nheads x dim) """ assert sum(ch_split) == tokens.size(-1); mesh_grid = self.get_mesh_3d(rope_positions, bsz=tokens.shape[0]) out = [] for i, (D, x) in enumerate(zip(ch_split, torch.split(tokens, ch_split, dim=-1))): cos, sin = self.get_cos_sin(D, int(mesh_grid.max()) + 1, tokens.device, tokens.dtype) if parallel: pass else: mesh = mesh_grid[:, :, i].clone() x = self.apply_rope1d(x, mesh.to(tokens.device), cos, sin) out.append(x) tokens = torch.cat(out, dim=-1) return tokens class SelfAttention(Attention): def __init__(self, hidden_dim, head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type='torch'): super().__init__() self.head_dim = head_dim self.n_heads = hidden_dim // head_dim self.wqkv = nn.Linear(hidden_dim, hidden_dim*3, bias=bias) self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias) self.with_rope = with_rope self.with_qk_norm = with_qk_norm if self.with_qk_norm: self.q_norm = RMSNorm(head_dim, elementwise_affine=True) self.k_norm = RMSNorm(head_dim, elementwise_affine=True) if self.with_rope: self.rope_3d = RoPE3D(freq=1e4, F0=1.0, scaling_factor=1.0) self.rope_ch_split = [64, 32, 32] self.core_attention = self.attn_processor(attn_type=attn_type) self.parallel = attn_type=='parallel' def apply_rope3d(self, x, fhw_positions, rope_ch_split, parallel=True): x = self.rope_3d(x, fhw_positions, rope_ch_split, parallel) return x def forward( self, x, cu_seqlens=None, max_seqlen=None, rope_positions=None, attn_mask=None ): xqkv = self.wqkv(x) xqkv = xqkv.view(*x.shape[:-1], self.n_heads, 3*self.head_dim) xq, xk, xv = torch.split(xqkv, [self.head_dim]*3, dim=-1) ## seq_len, n, dim if self.with_qk_norm: xq = self.q_norm(xq) xk = self.k_norm(xk) if self.with_rope: xq = self.apply_rope3d(xq, rope_positions, self.rope_ch_split, parallel=self.parallel) xk = self.apply_rope3d(xk, rope_positions, self.rope_ch_split, parallel=self.parallel) output = self.core_attention( xq, xk, xv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, attn_mask=attn_mask ) output = rearrange(output, 'b s h d -> b s (h d)') output = self.wo(output) return output class CrossAttention(Attention): def __init__(self, hidden_dim, head_dim, bias=False, with_qk_norm=True, attn_type='torch'): super().__init__() self.head_dim = head_dim self.n_heads = hidden_dim // head_dim self.wq = nn.Linear(hidden_dim, hidden_dim, bias=bias) self.wkv = nn.Linear(hidden_dim, hidden_dim*2, bias=bias) self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias) self.with_qk_norm = with_qk_norm if self.with_qk_norm: self.q_norm = RMSNorm(head_dim, elementwise_affine=True) self.k_norm = RMSNorm(head_dim, elementwise_affine=True) self.core_attention = self.attn_processor(attn_type=attn_type) def forward( self, x: torch.Tensor, encoder_hidden_states: torch.Tensor, attn_mask=None ): xq = self.wq(x) xq = xq.view(*xq.shape[:-1], self.n_heads, self.head_dim) xkv = self.wkv(encoder_hidden_states) xkv = xkv.view(*xkv.shape[:-1], self.n_heads, 2*self.head_dim) xk, xv = torch.split(xkv, [self.head_dim]*2, dim=-1) ## seq_len, n, dim if self.with_qk_norm: xq = self.q_norm(xq) xk = self.k_norm(xk) output = self.core_attention( xq, xk, xv, attn_mask=attn_mask ) output = rearrange(output, 'b s h d -> b s (h d)') output = self.wo(output) return output class GELU(nn.Module): r""" GELU activation function with tanh approximation support with `approximate="tanh"`. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True): super().__init__() self.proj = nn.Linear(dim_in, dim_out, bias=bias) self.approximate = approximate def gelu(self, gate: torch.Tensor) -> torch.Tensor: return torch.nn.functional.gelu(gate, approximate=self.approximate) def forward(self, hidden_states): hidden_states = self.proj(hidden_states) hidden_states = self.gelu(hidden_states) return hidden_states class FeedForward(nn.Module): def __init__( self, dim: int, inner_dim: Optional[int] = None, dim_out: Optional[int] = None, mult: int = 4, bias: bool = False, ): super().__init__() inner_dim = dim*mult if inner_dim is None else inner_dim dim_out = dim if dim_out is None else dim_out self.net = nn.ModuleList([ GELU(dim, inner_dim, approximate="tanh", bias=bias), nn.Identity(), nn.Linear(inner_dim, dim_out, bias=bias) ]) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: for module in self.net: hidden_states = module(hidden_states) return hidden_states def modulate(x, scale, shift): x = x * (1 + scale) + shift return x def gate(x, gate): x = gate * x return x class StepVideoTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (: obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (: obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. only_cross_attention (`bool`, *optional*): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, *optional*): Whether to use two self-attention layers. In this case no cross attention layers are used. upcast_attention (`bool`, *optional*): Whether to upcast the attention computation to float32. This is useful for mixed precision training. norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_type (`str`, *optional*, defaults to `"layer_norm"`): The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. final_dropout (`bool` *optional*, defaults to False): Whether to apply a final dropout after the last feed-forward layer. attention_type (`str`, *optional*, defaults to `"default"`): The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. positional_embeddings (`str`, *optional*, defaults to `None`): The type of positional embeddings to apply to. num_positional_embeddings (`int`, *optional*, defaults to `None`): The maximum number of positional embeddings to apply. """ def __init__( self, dim: int, attention_head_dim: int, norm_eps: float = 1e-5, ff_inner_dim: Optional[int] = None, ff_bias: bool = False, attention_type: str = 'parallel' ): super().__init__() self.dim = dim self.norm1 = nn.LayerNorm(dim, eps=norm_eps) self.attn1 = SelfAttention(dim, attention_head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type=attention_type) self.norm2 = nn.LayerNorm(dim, eps=norm_eps) self.attn2 = CrossAttention(dim, attention_head_dim, bias=False, with_qk_norm=True, attn_type='torch') self.ff = FeedForward(dim=dim, inner_dim=ff_inner_dim, dim_out=dim, bias=ff_bias) self.scale_shift_table = nn.Parameter(torch.randn(6, dim) /dim**0.5) @torch.no_grad() def forward( self, q: torch.Tensor, kv: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, attn_mask = None, rope_positions: list = None, ) -> torch.Tensor: shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( torch.clone(chunk) for chunk in (self.scale_shift_table[None].to(dtype=q.dtype, device=q.device) + timestep.reshape(-1, 6, self.dim)).chunk(6, dim=1) ) scale_shift_q = modulate(self.norm1(q), scale_msa, shift_msa) attn_q = self.attn1( scale_shift_q, rope_positions=rope_positions ) q = gate(attn_q, gate_msa) + q attn_q = self.attn2( q, kv, attn_mask ) q = attn_q + q scale_shift_q = modulate(self.norm2(q), scale_mlp, shift_mlp) ff_output = self.ff(scale_shift_q) q = gate(ff_output, gate_mlp) + q return q class PatchEmbed(nn.Module): """2D Image to Patch Embedding""" def __init__( self, patch_size=64, in_channels=3, embed_dim=768, layer_norm=False, flatten=True, bias=True, ): super().__init__() self.flatten = flatten self.layer_norm = layer_norm self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) def forward(self, latent): latent = self.proj(latent).to(latent.dtype) if self.flatten: latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC if self.layer_norm: latent = self.norm(latent) return latent class StepVideoModel(torch.nn.Module): def __init__( self, num_attention_heads: int = 48, attention_head_dim: int = 128, in_channels: int = 64, out_channels: Optional[int] = 64, num_layers: int = 48, dropout: float = 0.0, patch_size: int = 1, norm_type: str = "ada_norm_single", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, use_additional_conditions: Optional[bool] = False, caption_channels: Optional[Union[int, List, Tuple]] = [6144, 1024], attention_type: Optional[str] = "torch", ): super().__init__() # Set some common variables used across the board. self.inner_dim = num_attention_heads * attention_head_dim self.out_channels = in_channels if out_channels is None else out_channels self.use_additional_conditions = use_additional_conditions self.pos_embed = PatchEmbed( patch_size=patch_size, in_channels=in_channels, embed_dim=self.inner_dim, ) self.transformer_blocks = nn.ModuleList( [ StepVideoTransformerBlock( dim=self.inner_dim, attention_head_dim=attention_head_dim, attention_type=attention_type ) for _ in range(num_layers) ] ) # 3. Output blocks. self.norm_out = nn.LayerNorm(self.inner_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels) self.patch_size = patch_size self.adaln_single = AdaLayerNormSingle( self.inner_dim, use_additional_conditions=self.use_additional_conditions ) if isinstance(caption_channels, int): caption_channel = caption_channels else: caption_channel, clip_channel = caption_channels self.clip_projection = nn.Linear(clip_channel, self.inner_dim) self.caption_norm = nn.LayerNorm(caption_channel, eps=norm_eps, elementwise_affine=norm_elementwise_affine) self.caption_projection = PixArtAlphaTextProjection( in_features=caption_channel, hidden_size=self.inner_dim ) self.parallel = attention_type=='parallel' def patchfy(self, hidden_states): hidden_states = rearrange(hidden_states, 'b f c h w -> (b f) c h w') hidden_states = self.pos_embed(hidden_states) return hidden_states def prepare_attn_mask(self, encoder_attention_mask, encoder_hidden_states, q_seqlen): kv_seqlens = encoder_attention_mask.sum(dim=1).int() mask = torch.zeros([len(kv_seqlens), q_seqlen, max(kv_seqlens)], dtype=torch.bool, device=encoder_attention_mask.device) encoder_hidden_states = encoder_hidden_states[:,: max(kv_seqlens)] for i, kv_len in enumerate(kv_seqlens): mask[i, :, :kv_len] = 1 return encoder_hidden_states, mask def block_forward( self, hidden_states, encoder_hidden_states=None, timestep=None, rope_positions=None, attn_mask=None, parallel=True ): for block in tqdm(self.transformer_blocks, desc="Transformer blocks"): hidden_states = block( hidden_states, encoder_hidden_states, timestep=timestep, attn_mask=attn_mask, rope_positions=rope_positions ) return hidden_states @torch.inference_mode() def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_hidden_states_2: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, added_cond_kwargs: Dict[str, torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, fps: torch.Tensor=None, return_dict: bool = False, ): assert hidden_states.ndim==5; "hidden_states's shape should be (bsz, f, ch, h ,w)" bsz, frame, _, height, width = hidden_states.shape height, width = height // self.patch_size, width // self.patch_size hidden_states = self.patchfy(hidden_states) len_frame = hidden_states.shape[1] if self.use_additional_conditions: added_cond_kwargs = { "resolution": torch.tensor([(height, width)]*bsz, device=hidden_states.device, dtype=hidden_states.dtype), "nframe": torch.tensor([frame]*bsz, device=hidden_states.device, dtype=hidden_states.dtype), "fps": fps } else: added_cond_kwargs = {} timestep, embedded_timestep = self.adaln_single( timestep, added_cond_kwargs=added_cond_kwargs ) encoder_hidden_states = self.caption_projection(self.caption_norm(encoder_hidden_states)) if encoder_hidden_states_2 is not None and hasattr(self, 'clip_projection'): clip_embedding = self.clip_projection(encoder_hidden_states_2) encoder_hidden_states = torch.cat([clip_embedding, encoder_hidden_states], dim=1) hidden_states = rearrange(hidden_states, '(b f) l d-> b (f l) d', b=bsz, f=frame, l=len_frame).contiguous() encoder_hidden_states, attn_mask = self.prepare_attn_mask(encoder_attention_mask, encoder_hidden_states, q_seqlen=frame*len_frame) hidden_states = self.block_forward( hidden_states, encoder_hidden_states, timestep=timestep, rope_positions=[frame, height, width], attn_mask=attn_mask, parallel=self.parallel ) hidden_states = rearrange(hidden_states, 'b (f l) d -> (b f) l d', b=bsz, f=frame, l=len_frame) embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame).contiguous() shift, scale = (self.scale_shift_table[None].to(dtype=embedded_timestep.dtype, device=embedded_timestep.device) + embedded_timestep[:, None]).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) # unpatchify hidden_states = hidden_states.reshape( shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) ) hidden_states = rearrange(hidden_states, 'n h w p q c -> n c h p w q') output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) ) output = rearrange(output, '(b f) c h w -> b f c h w', f=frame) if return_dict: return {'x': output} return output @staticmethod def state_dict_converter(): return StepVideoDiTStateDictConverter() class StepVideoDiTStateDictConverter: def __init__(self): super().__init__() def from_diffusers(self, state_dict): return state_dict def from_civitai(self, state_dict): return state_dict