import torch from einops import rearrange, repeat class TileWorker: def __init__(self): pass def mask(self, height, width, border_width): # Create a mask with shape (height, width). # The centre area is filled with 1, and the border line is filled with values in range (0, 1]. x = torch.arange(height).repeat(width, 1).T y = torch.arange(width).repeat(height, 1) mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values mask = (mask / border_width).clip(0, 1) return mask def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype): # Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num) batch_size, channel, _, _ = model_input.shape model_input = model_input.to(device=tile_device, dtype=tile_dtype) unfold_operator = torch.nn.Unfold( kernel_size=(tile_size, tile_size), stride=(tile_stride, tile_stride) ) model_input = unfold_operator(model_input) model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1)) return model_input def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype): # Call y=forward_fn(x) for each tile tile_num = model_input.shape[-1] model_output_stack = [] for tile_id in range(0, tile_num, tile_batch_size): # process input tile_id_ = min(tile_id + tile_batch_size, tile_num) x = model_input[:, :, :, :, tile_id: tile_id_] x = x.to(device=inference_device, dtype=inference_dtype) x = rearrange(x, "b c h w n -> (n b) c h w") # process output y = forward_fn(x) y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id) y = y.to(device=tile_device, dtype=tile_dtype) model_output_stack.append(y) model_output = torch.concat(model_output_stack, dim=-1) return model_output def io_scale(self, model_output, tile_size): # Determine the size modification happened in forward_fn # We only consider the same scale on height and width. io_scale = model_output.shape[2] / tile_size return io_scale def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype): # The reversed function of tile mask = self.mask(tile_size, tile_size, border_width) mask = mask.to(device=tile_device, dtype=tile_dtype) mask = rearrange(mask, "h w -> 1 1 h w 1") model_output = model_output * mask fold_operator = torch.nn.Fold( output_size=(height, width), kernel_size=(tile_size, tile_size), stride=(tile_stride, tile_stride) ) mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1]) model_output = rearrange(model_output, "b c h w n -> b (c h w) n") model_output = fold_operator(model_output) / fold_operator(mask) return model_output def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None): # Prepare inference_device, inference_dtype = model_input.device, model_input.dtype height, width = model_input.shape[2], model_input.shape[3] border_width = int(tile_stride*0.5) if border_width is None else border_width # tile model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype) # inference model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype) # resize io_scale = self.io_scale(model_output, tile_size) height, width = int(height*io_scale), int(width*io_scale) tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale) border_width = int(border_width*io_scale) # untile model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype) # Done! model_output = model_output.to(device=inference_device, dtype=inference_dtype) return model_output class FastTileWorker: def __init__(self): pass def build_mask(self, data, is_bound): _, _, H, W = data.shape h = repeat(torch.arange(H), "H -> H W", H=H, W=W) w = repeat(torch.arange(W), "W -> H W", H=H, W=W) border_width = (H + W) // 4 pad = torch.ones_like(h) * border_width mask = torch.stack([ pad if is_bound[0] else h + 1, pad if is_bound[1] else H - h, pad if is_bound[2] else w + 1, pad if is_bound[3] else W - w ]).min(dim=0).values mask = mask.clip(1, border_width) mask = (mask / border_width).to(dtype=data.dtype, device=data.device) mask = rearrange(mask, "H W -> 1 H W") return mask def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_device="cpu", tile_dtype=torch.float32, border_width=None): # Prepare B, C, H, W = model_input.shape border_width = int(tile_stride*0.5) if border_width is None else border_width weight = torch.zeros((1, 1, H, W), dtype=tile_dtype, device=tile_device) values = torch.zeros((B, C, H, W), dtype=tile_dtype, device=tile_device) # Split tasks tasks = [] for h in range(0, H, tile_stride): for w in range(0, W, tile_stride): if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W): continue h_, w_ = h + tile_size, w + tile_size if h_ > H: h, h_ = H - tile_size, H if w_ > W: w, w_ = W - tile_size, W tasks.append((h, h_, w, w_)) # Run for hl, hr, wl, wr in tasks: # Forward hidden_states_batch = forward_fn(hl, hr, wl, wr).to(dtype=tile_dtype, device=tile_device) mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W)) values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask weight[:, :, hl:hr, wl:wr] += mask values /= weight return values class TileWorker2Dto3D: """ Process 3D tensors, but only enable TileWorker on 2D. """ def __init__(self): pass def build_mask(self, T, H, W, dtype, device, is_bound, border_width): t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W) h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W) w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W) border_width = (H + W) // 4 if border_width is None else border_width pad = torch.ones_like(h) * border_width mask = torch.stack([ pad if is_bound[0] else t + 1, pad if is_bound[1] else T - t, pad if is_bound[2] else h + 1, pad if is_bound[3] else H - h, pad if is_bound[4] else w + 1, pad if is_bound[5] else W - w ]).min(dim=0).values mask = mask.clip(1, border_width) mask = (mask / border_width).to(dtype=dtype, device=device) mask = rearrange(mask, "T H W -> 1 1 T H W") return mask def tiled_forward( self, forward_fn, model_input, tile_size, tile_stride, tile_device="cpu", tile_dtype=torch.float32, computation_device="cuda", computation_dtype=torch.float32, border_width=None, scales=[1, 1, 1, 1], progress_bar=lambda x:x ): B, C, T, H, W = model_input.shape scale_C, scale_T, scale_H, scale_W = scales tile_size_H, tile_size_W = tile_size tile_stride_H, tile_stride_W = tile_stride value = torch.zeros((B, int(C*scale_C), int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device) weight = torch.zeros((1, 1, int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device) # Split tasks tasks = [] for h in range(0, H, tile_stride_H): for w in range(0, W, tile_stride_W): if (h-tile_stride_H >= 0 and h-tile_stride_H+tile_size_H >= H) or (w-tile_stride_W >= 0 and w-tile_stride_W+tile_size_W >= W): continue h_, w_ = h + tile_size_H, w + tile_size_W if h_ > H: h, h_ = max(H - tile_size_H, 0), H if w_ > W: w, w_ = max(W - tile_size_W, 0), W tasks.append((h, h_, w, w_)) # Run for hl, hr, wl, wr in progress_bar(tasks): mask = self.build_mask( int(T*scale_T), int((hr-hl)*scale_H), int((wr-wl)*scale_W), tile_dtype, tile_device, is_bound=(True, True, hl==0, hr>=H, wl==0, wr>=W), border_width=border_width ) grid_input = model_input[:, :, :, hl:hr, wl:wr].to(dtype=computation_dtype, device=computation_device) grid_output = forward_fn(grid_input).to(dtype=tile_dtype, device=tile_device) value[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += grid_output * mask weight[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += mask value = value / weight return value