import torch import torch.nn as nn import torch.nn.functional as F import math from typing import Tuple, Optional from einops import rearrange from .utils import hash_state_dict_keys try: import flash_attn_interface FLASH_ATTN_3_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_3_AVAILABLE = False try: import flash_attn FLASH_ATTN_2_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_2_AVAILABLE = False try: from sageattention import sageattn SAGE_ATTN_AVAILABLE = True except ModuleNotFoundError: SAGE_ATTN_AVAILABLE = False def flash_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, num_heads: int, compatibility_mode=False): if compatibility_mode: q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) x = F.scaled_dot_product_attention(q, k, v) x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) elif FLASH_ATTN_3_AVAILABLE: q = rearrange(q, "b s (n d) -> b s n d", n=num_heads) k = rearrange(k, "b s (n d) -> b s n d", n=num_heads) v = rearrange(v, "b s (n d) -> b s n d", n=num_heads) x = flash_attn_interface.flash_attn_func(q, k, v) x = rearrange(x, "b s n d -> b s (n d)", n=num_heads) elif FLASH_ATTN_2_AVAILABLE: q = rearrange(q, "b s (n d) -> b s n d", n=num_heads) k = rearrange(k, "b s (n d) -> b s n d", n=num_heads) v = rearrange(v, "b s (n d) -> b s n d", n=num_heads) x = flash_attn.flash_attn_func(q, k, v) x = rearrange(x, "b s n d -> b s (n d)", n=num_heads) elif SAGE_ATTN_AVAILABLE: q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) x = sageattn(q, k, v) x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) else: q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) x = F.scaled_dot_product_attention(q, k, v) x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) return x def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor): return (x * (1 + scale) + shift) def sinusoidal_embedding_1d(dim, position): sinusoid = torch.outer(position.type(torch.float64), torch.pow( 10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2))) x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) return x.to(position.dtype) def precompute_freqs_cis_3d(dim: int, end: int = 1024, theta: float = 10000.0): # 3d rope precompute f_freqs_cis = precompute_freqs_cis(dim - 2 * (dim // 3), end, theta) h_freqs_cis = precompute_freqs_cis(dim // 3, end, theta) w_freqs_cis = precompute_freqs_cis(dim // 3, end, theta) return f_freqs_cis, h_freqs_cis, w_freqs_cis def precompute_freqs_cis(dim: int, end: int = 1024, theta: float = 10000.0): # 1d rope precompute freqs = 1.0 / (theta ** (torch.arange(0, dim, 2) [: (dim // 2)].double() / dim)) freqs = torch.outer(torch.arange(end, device=freqs.device), freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis def rope_apply(x, freqs, num_heads): x = rearrange(x, "b s (n d) -> b s n d", n=num_heads) x_out = torch.view_as_complex(x.to(torch.float64).reshape( x.shape[0], x.shape[1], x.shape[2], -1, 2)) x_out = torch.view_as_real(x_out * freqs).flatten(2) return x_out.to(x.dtype) class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def norm(self, x): return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) def forward(self, x): dtype = x.dtype return self.norm(x.float()).to(dtype) * self.weight class AttentionModule(nn.Module): def __init__(self, num_heads): super().__init__() self.num_heads = num_heads def forward(self, q, k, v): x = flash_attention(q=q, k=k, v=v, num_heads=self.num_heads) return x class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int, eps: float = 1e-6): super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.o = nn.Linear(dim, dim) self.norm_q = RMSNorm(dim, eps=eps) self.norm_k = RMSNorm(dim, eps=eps) self.attn = AttentionModule(self.num_heads) def forward(self, x, freqs): q = self.norm_q(self.q(x)) k = self.norm_k(self.k(x)) v = self.v(x) q = rope_apply(q, freqs, self.num_heads) k = rope_apply(k, freqs, self.num_heads) x = self.attn(q, k, v) return self.o(x) class CrossAttention(nn.Module): def __init__(self, dim: int, num_heads: int, eps: float = 1e-6, has_image_input: bool = False): super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.o = nn.Linear(dim, dim) self.norm_q = RMSNorm(dim, eps=eps) self.norm_k = RMSNorm(dim, eps=eps) self.has_image_input = has_image_input if has_image_input: self.k_img = nn.Linear(dim, dim) self.v_img = nn.Linear(dim, dim) self.norm_k_img = RMSNorm(dim, eps=eps) self.attn = AttentionModule(self.num_heads) def forward(self, x: torch.Tensor, y: torch.Tensor): if self.has_image_input: img = y[:, :257] ctx = y[:, 257:] else: ctx = y q = self.norm_q(self.q(x)) k = self.norm_k(self.k(ctx)) v = self.v(ctx) x = self.attn(q, k, v) if self.has_image_input: k_img = self.norm_k_img(self.k_img(img)) v_img = self.v_img(img) y = flash_attention(q, k_img, v_img, num_heads=self.num_heads) x = x + y return self.o(x) class DiTBlock(nn.Module): def __init__(self, has_image_input: bool, dim: int, num_heads: int, ffn_dim: int, eps: float = 1e-6): super().__init__() self.dim = dim self.num_heads = num_heads self.ffn_dim = ffn_dim self.self_attn = SelfAttention(dim, num_heads, eps) self.cross_attn = CrossAttention( dim, num_heads, eps, has_image_input=has_image_input) self.norm1 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) self.norm2 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) self.norm3 = nn.LayerNorm(dim, eps=eps) self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU( approximate='tanh'), nn.Linear(ffn_dim, dim)) self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) def forward(self, x, context, cam_emb, t_mod, freqs): # msa: multi-head self-attention mlp: multi-layer perceptron shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(6, dim=1) input_x = modulate(self.norm1(x), shift_msa, scale_msa) # encode camera cam_emb = self.cam_encoder(cam_emb) cam_emb = cam_emb.repeat(1, 2, 1) cam_emb = cam_emb.unsqueeze(2).unsqueeze(3).repeat(1, 1, 30, 52, 1) cam_emb = rearrange(cam_emb, 'b f h w d -> b (f h w) d') input_x = input_x + cam_emb x = x + gate_msa * self.projector(self.self_attn(input_x, freqs)) x = x + self.cross_attn(self.norm3(x), context) input_x = modulate(self.norm2(x), shift_mlp, scale_mlp) x = x + gate_mlp * self.ffn(input_x) return x class MLP(torch.nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.proj = torch.nn.Sequential( nn.LayerNorm(in_dim), nn.Linear(in_dim, in_dim), nn.GELU(), nn.Linear(in_dim, out_dim), nn.LayerNorm(out_dim) ) def forward(self, x): return self.proj(x) class Head(nn.Module): def __init__(self, dim: int, out_dim: int, patch_size: Tuple[int, int, int], eps: float): super().__init__() self.dim = dim self.patch_size = patch_size self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) self.head = nn.Linear(dim, out_dim * math.prod(patch_size)) self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) def forward(self, x, t_mod): shift, scale = (self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(2, dim=1) x = (self.head(self.norm(x) * (1 + scale) + shift)) return x class WanModel(torch.nn.Module): def __init__( self, dim: int, in_dim: int, ffn_dim: int, out_dim: int, text_dim: int, freq_dim: int, eps: float, patch_size: Tuple[int, int, int], num_heads: int, num_layers: int, has_image_input: bool, ): super().__init__() self.dim = dim self.freq_dim = freq_dim self.has_image_input = has_image_input self.patch_size = patch_size self.patch_embedding = nn.Conv3d( in_dim, dim, kernel_size=patch_size, stride=patch_size) self.text_embedding = nn.Sequential( nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), nn.Linear(dim, dim) ) self.time_embedding = nn.Sequential( nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim) ) self.time_projection = nn.Sequential( nn.SiLU(), nn.Linear(dim, dim * 6)) self.blocks = nn.ModuleList([ DiTBlock(has_image_input, dim, num_heads, ffn_dim, eps) for _ in range(num_layers) ]) self.head = Head(dim, out_dim, patch_size, eps) head_dim = dim // num_heads self.freqs = precompute_freqs_cis_3d(head_dim) if has_image_input: self.img_emb = MLP(1280, dim) # clip_feature_dim = 1280 def patchify(self, x: torch.Tensor): x = self.patch_embedding(x) grid_size = x.shape[2:] x = rearrange(x, 'b c f h w -> b (f h w) c').contiguous() return x, grid_size # x, grid_size: (f, h, w) def unpatchify(self, x: torch.Tensor, grid_size: torch.Tensor): return rearrange( x, 'b (f h w) (x y z c) -> b c (f x) (h y) (w z)', f=grid_size[0], h=grid_size[1], w=grid_size[2], x=self.patch_size[0], y=self.patch_size[1], z=self.patch_size[2] ) def forward(self, x: torch.Tensor, timestep: torch.Tensor, cam_emb: torch.Tensor, context: torch.Tensor, clip_feature: Optional[torch.Tensor] = None, y: Optional[torch.Tensor] = None, use_gradient_checkpointing: bool = False, use_gradient_checkpointing_offload: bool = False, **kwargs, ): t = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, timestep)) t_mod = self.time_projection(t).unflatten(1, (6, self.dim)) context = self.text_embedding(context) if self.has_image_input: x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w) clip_embdding = self.img_emb(clip_feature) context = torch.cat([clip_embdding, context], dim=1) x, (f, h, w) = self.patchify(x) freqs = torch.cat([ self.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), self.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), self.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) ], dim=-1).reshape(f * h * w, 1, -1).to(x.device) def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward for block in self.blocks: if self.training and use_gradient_checkpointing: if use_gradient_checkpointing_offload: with torch.autograd.graph.save_on_cpu(): x = torch.utils.checkpoint.checkpoint( create_custom_forward(block), x, context, cam_emb, t_mod, freqs, use_reentrant=False, ) else: x = torch.utils.checkpoint.checkpoint( create_custom_forward(block), x, context, cam_emb, t_mod, freqs, use_reentrant=False, ) else: x = block(x, context, cam_emb, t_mod, freqs) x = self.head(x, t) x = self.unpatchify(x, (f, h, w)) return x @staticmethod def state_dict_converter(): return WanModelStateDictConverter() class WanModelStateDictConverter: def __init__(self): pass def from_diffusers(self, state_dict): rename_dict = { "blocks.0.attn1.norm_k.weight": "blocks.0.self_attn.norm_k.weight", "blocks.0.attn1.norm_q.weight": "blocks.0.self_attn.norm_q.weight", "blocks.0.attn1.to_k.bias": "blocks.0.self_attn.k.bias", "blocks.0.attn1.to_k.weight": "blocks.0.self_attn.k.weight", "blocks.0.attn1.to_out.0.bias": "blocks.0.self_attn.o.bias", "blocks.0.attn1.to_out.0.weight": "blocks.0.self_attn.o.weight", "blocks.0.attn1.to_q.bias": "blocks.0.self_attn.q.bias", "blocks.0.attn1.to_q.weight": "blocks.0.self_attn.q.weight", "blocks.0.attn1.to_v.bias": "blocks.0.self_attn.v.bias", "blocks.0.attn1.to_v.weight": "blocks.0.self_attn.v.weight", "blocks.0.attn2.norm_k.weight": "blocks.0.cross_attn.norm_k.weight", "blocks.0.attn2.norm_q.weight": "blocks.0.cross_attn.norm_q.weight", "blocks.0.attn2.to_k.bias": "blocks.0.cross_attn.k.bias", "blocks.0.attn2.to_k.weight": "blocks.0.cross_attn.k.weight", "blocks.0.attn2.to_out.0.bias": "blocks.0.cross_attn.o.bias", "blocks.0.attn2.to_out.0.weight": "blocks.0.cross_attn.o.weight", "blocks.0.attn2.to_q.bias": "blocks.0.cross_attn.q.bias", "blocks.0.attn2.to_q.weight": "blocks.0.cross_attn.q.weight", "blocks.0.attn2.to_v.bias": "blocks.0.cross_attn.v.bias", "blocks.0.attn2.to_v.weight": "blocks.0.cross_attn.v.weight", "blocks.0.ffn.net.0.proj.bias": "blocks.0.ffn.0.bias", "blocks.0.ffn.net.0.proj.weight": "blocks.0.ffn.0.weight", "blocks.0.ffn.net.2.bias": "blocks.0.ffn.2.bias", "blocks.0.ffn.net.2.weight": "blocks.0.ffn.2.weight", "blocks.0.norm2.bias": "blocks.0.norm3.bias", "blocks.0.norm2.weight": "blocks.0.norm3.weight", "blocks.0.scale_shift_table": "blocks.0.modulation", "condition_embedder.text_embedder.linear_1.bias": "text_embedding.0.bias", "condition_embedder.text_embedder.linear_1.weight": "text_embedding.0.weight", "condition_embedder.text_embedder.linear_2.bias": "text_embedding.2.bias", "condition_embedder.text_embedder.linear_2.weight": "text_embedding.2.weight", "condition_embedder.time_embedder.linear_1.bias": "time_embedding.0.bias", "condition_embedder.time_embedder.linear_1.weight": "time_embedding.0.weight", "condition_embedder.time_embedder.linear_2.bias": "time_embedding.2.bias", "condition_embedder.time_embedder.linear_2.weight": "time_embedding.2.weight", "condition_embedder.time_proj.bias": "time_projection.1.bias", "condition_embedder.time_proj.weight": "time_projection.1.weight", "patch_embedding.bias": "patch_embedding.bias", "patch_embedding.weight": "patch_embedding.weight", "scale_shift_table": "head.modulation", "proj_out.bias": "head.head.bias", "proj_out.weight": "head.head.weight", } state_dict_ = {} for name, param in state_dict.items(): if name in rename_dict: state_dict_[rename_dict[name]] = param else: name_ = ".".join(name.split(".")[:1] + ["0"] + name.split(".")[2:]) if name_ in rename_dict: name_ = rename_dict[name_] name_ = ".".join(name_.split(".")[:1] + [name.split(".")[1]] + name_.split(".")[2:]) state_dict_[name_] = param if hash_state_dict_keys(state_dict) == "cb104773c6c2cb6df4f9529ad5c60d0b": config = { "model_type": "t2v", "patch_size": (1, 2, 2), "text_len": 512, "in_dim": 16, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "window_size": (-1, -1), "qk_norm": True, "cross_attn_norm": True, "eps": 1e-6, } else: config = {} return state_dict_, config def from_civitai(self, state_dict): if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814": config = { "has_image_input": False, "patch_size": [1, 2, 2], "in_dim": 16, "dim": 1536, "ffn_dim": 8960, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 12, "num_layers": 30, "eps": 1e-6 } elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70": config = { "has_image_input": False, "patch_size": [1, 2, 2], "in_dim": 16, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6 } elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e": config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 36, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6 } else: config = {} return state_dict, config