from .base_prompter import BasePrompter from ..models.flux_text_encoder import FluxTextEncoder2 from transformers import T5TokenizerFast import os class CogPrompter(BasePrompter): def __init__( self, tokenizer_path=None ): if tokenizer_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_path = os.path.join(base_path, "tokenizer_configs/cog/tokenizer") super().__init__() self.tokenizer = T5TokenizerFast.from_pretrained(tokenizer_path) self.text_encoder: FluxTextEncoder2 = None def fetch_models(self, text_encoder: FluxTextEncoder2 = None): self.text_encoder = text_encoder def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): input_ids = tokenizer( prompt, return_tensors="pt", padding="max_length", max_length=max_length, truncation=True, ).input_ids.to(device) prompt_emb = text_encoder(input_ids) prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) return prompt_emb def encode_prompt( self, prompt, positive=True, device="cuda" ): prompt = self.process_prompt(prompt, positive=positive) prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder, self.tokenizer, 226, device) return prompt_emb