from .base_prompter import BasePrompter from ..models.sd3_text_encoder import SD3TextEncoder1 from ..models.hunyuan_video_text_encoder import HunyuanVideoLLMEncoder, HunyuanVideoMLLMEncoder from transformers import CLIPTokenizer, LlamaTokenizerFast, CLIPImageProcessor import os, torch from typing import Union PROMPT_TEMPLATE_ENCODE = ( "<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, " "quantity, text, spatial relationships of the objects and background:<|eot_id|>" "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>") PROMPT_TEMPLATE_ENCODE_VIDEO = ( "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: " "1. The main content and theme of the video." "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." "4. background environment, light, style and atmosphere." "5. camera angles, movements, and transitions used in the video:<|eot_id|>" "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>") PROMPT_TEMPLATE_ENCODE_I2V = ( "<|start_header_id|>system<|end_header_id|>\n\n\nDescribe the image by detailing the color, shape, size, texture, " "quantity, text, spatial relationships of the objects and background:<|eot_id|>" "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = ( "<|start_header_id|>system<|end_header_id|>\n\n\nDescribe the video by detailing the following aspects according to the reference image: " "1. The main content and theme of the video." "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." "4. background environment, light, style and atmosphere." "5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n" "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) PROMPT_TEMPLATE = { "dit-llm-encode": { "template": PROMPT_TEMPLATE_ENCODE, "crop_start": 36, }, "dit-llm-encode-video": { "template": PROMPT_TEMPLATE_ENCODE_VIDEO, "crop_start": 95, }, "dit-llm-encode-i2v": { "template": PROMPT_TEMPLATE_ENCODE_I2V, "crop_start": 36, "image_emb_start": 5, "image_emb_end": 581, "image_emb_len": 576, "double_return_token_id": 271 }, "dit-llm-encode-video-i2v": { "template": PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, "crop_start": 103, "image_emb_start": 5, "image_emb_end": 581, "image_emb_len": 576, "double_return_token_id": 271 }, } NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion" class HunyuanVideoPrompter(BasePrompter): def __init__( self, tokenizer_1_path=None, tokenizer_2_path=None, ): if tokenizer_1_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_1_path = os.path.join( base_path, "tokenizer_configs/hunyuan_video/tokenizer_1") if tokenizer_2_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_2_path = os.path.join( base_path, "tokenizer_configs/hunyuan_video/tokenizer_2") super().__init__() self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path) self.tokenizer_2 = LlamaTokenizerFast.from_pretrained(tokenizer_2_path, padding_side='right') self.text_encoder_1: SD3TextEncoder1 = None self.text_encoder_2: HunyuanVideoLLMEncoder = None self.prompt_template = PROMPT_TEMPLATE['dit-llm-encode'] self.prompt_template_video = PROMPT_TEMPLATE['dit-llm-encode-video'] def fetch_models(self, text_encoder_1: SD3TextEncoder1 = None, text_encoder_2: Union[HunyuanVideoLLMEncoder, HunyuanVideoMLLMEncoder] = None): self.text_encoder_1 = text_encoder_1 self.text_encoder_2 = text_encoder_2 if isinstance(text_encoder_2, HunyuanVideoMLLMEncoder): # processor # TODO: may need to replace processor with local implementation base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/hunyuan_video/tokenizer_2") self.processor = CLIPImageProcessor.from_pretrained(tokenizer_2_path) # template self.prompt_template = PROMPT_TEMPLATE['dit-llm-encode-i2v'] self.prompt_template_video = PROMPT_TEMPLATE['dit-llm-encode-video-i2v'] def apply_text_to_template(self, text, template): assert isinstance(template, str) if isinstance(text, list): return [self.apply_text_to_template(text_) for text_ in text] elif isinstance(text, str): # Will send string to tokenizer. Used for llm return template.format(text) else: raise TypeError(f"Unsupported prompt type: {type(text)}") def encode_prompt_using_clip(self, prompt, max_length, device): tokenized_result = self.tokenizer_1( prompt, return_tensors="pt", padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True ) input_ids = tokenized_result.input_ids.to(device) attention_mask = tokenized_result.attention_mask.to(device) return self.text_encoder_1(input_ids=input_ids, extra_mask=attention_mask)[0] def encode_prompt_using_llm(self, prompt, max_length, device, crop_start, hidden_state_skip_layer=2, use_attention_mask=True): max_length += crop_start inputs = self.tokenizer_2(prompt, return_tensors="pt", padding="max_length", max_length=max_length, truncation=True) input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) last_hidden_state = self.text_encoder_2(input_ids, attention_mask, hidden_state_skip_layer) # crop out if crop_start > 0: last_hidden_state = last_hidden_state[:, crop_start:] attention_mask = (attention_mask[:, crop_start:] if use_attention_mask else None) return last_hidden_state, attention_mask def encode_prompt_using_mllm(self, prompt, images, max_length, device, crop_start, hidden_state_skip_layer=2, use_attention_mask=True, image_embed_interleave=4): image_outputs = self.processor(images, return_tensors="pt")["pixel_values"].to(device) max_length += crop_start inputs = self.tokenizer_2(prompt, return_tensors="pt", padding="max_length", max_length=max_length, truncation=True) input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) last_hidden_state = self.text_encoder_2(input_ids=input_ids, attention_mask=attention_mask, hidden_state_skip_layer=hidden_state_skip_layer, pixel_values=image_outputs) text_crop_start = (crop_start - 1 + self.prompt_template_video.get("image_emb_len", 576)) image_crop_start = self.prompt_template_video.get("image_emb_start", 5) image_crop_end = self.prompt_template_video.get("image_emb_end", 581) batch_indices, last_double_return_token_indices = torch.where( input_ids == self.prompt_template_video.get("double_return_token_id", 271)) if last_double_return_token_indices.shape[0] == 3: # in case the prompt is too long last_double_return_token_indices = torch.cat(( last_double_return_token_indices, torch.tensor([input_ids.shape[-1]]), )) batch_indices = torch.cat((batch_indices, torch.tensor([0]))) last_double_return_token_indices = (last_double_return_token_indices.reshape(input_ids.shape[0], -1)[:, -1]) batch_indices = batch_indices.reshape(input_ids.shape[0], -1)[:, -1] assistant_crop_start = (last_double_return_token_indices - 1 + self.prompt_template_video.get("image_emb_len", 576) - 4) assistant_crop_end = (last_double_return_token_indices - 1 + self.prompt_template_video.get("image_emb_len", 576)) attention_mask_assistant_crop_start = (last_double_return_token_indices - 4) attention_mask_assistant_crop_end = last_double_return_token_indices text_last_hidden_state = [] text_attention_mask = [] image_last_hidden_state = [] image_attention_mask = [] for i in range(input_ids.shape[0]): text_last_hidden_state.append( torch.cat([ last_hidden_state[i, text_crop_start:assistant_crop_start[i].item()], last_hidden_state[i, assistant_crop_end[i].item():], ])) text_attention_mask.append( torch.cat([ attention_mask[ i, crop_start:attention_mask_assistant_crop_start[i].item(), ], attention_mask[i, attention_mask_assistant_crop_end[i].item():], ]) if use_attention_mask else None) image_last_hidden_state.append(last_hidden_state[i, image_crop_start:image_crop_end]) image_attention_mask.append( torch.ones(image_last_hidden_state[-1].shape[0]).to(last_hidden_state.device). to(attention_mask.dtype) if use_attention_mask else None) text_last_hidden_state = torch.stack(text_last_hidden_state) text_attention_mask = torch.stack(text_attention_mask) image_last_hidden_state = torch.stack(image_last_hidden_state) image_attention_mask = torch.stack(image_attention_mask) image_last_hidden_state = image_last_hidden_state[:, ::image_embed_interleave, :] image_attention_mask = image_attention_mask[:, ::image_embed_interleave] assert (text_last_hidden_state.shape[0] == text_attention_mask.shape[0] and image_last_hidden_state.shape[0] == image_attention_mask.shape[0]) last_hidden_state = torch.cat([image_last_hidden_state, text_last_hidden_state], dim=1) attention_mask = torch.cat([image_attention_mask, text_attention_mask], dim=1) return last_hidden_state, attention_mask def encode_prompt(self, prompt, images=None, positive=True, device="cuda", clip_sequence_length=77, llm_sequence_length=256, data_type='video', use_template=True, hidden_state_skip_layer=2, use_attention_mask=True, image_embed_interleave=4): prompt = self.process_prompt(prompt, positive=positive) # apply template if use_template: template = self.prompt_template_video if data_type == 'video' else self.prompt_template prompt_formated = self.apply_text_to_template(prompt, template['template']) else: prompt_formated = prompt # Text encoder if data_type == 'video': crop_start = self.prompt_template_video.get("crop_start", 0) else: crop_start = self.prompt_template.get("crop_start", 0) # CLIP pooled_prompt_emb = self.encode_prompt_using_clip(prompt, clip_sequence_length, device) # LLM if images is None: prompt_emb, attention_mask = self.encode_prompt_using_llm(prompt_formated, llm_sequence_length, device, crop_start, hidden_state_skip_layer, use_attention_mask) else: prompt_emb, attention_mask = self.encode_prompt_using_mllm(prompt_formated, images, llm_sequence_length, device, crop_start, hidden_state_skip_layer, use_attention_mask, image_embed_interleave) return prompt_emb, pooled_prompt_emb, attention_mask