from .base_prompter import BasePrompter from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder from ..models.stepvideo_text_encoder import STEP1TextEncoder from transformers import BertTokenizer import os, torch class StepVideoPrompter(BasePrompter): def __init__( self, tokenizer_1_path=None, ): if tokenizer_1_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_1_path = os.path.join( base_path, "tokenizer_configs/hunyuan_dit/tokenizer") super().__init__() self.tokenizer_1 = BertTokenizer.from_pretrained(tokenizer_1_path) def fetch_models(self, text_encoder_1: HunyuanDiTCLIPTextEncoder = None, text_encoder_2: STEP1TextEncoder = None): self.text_encoder_1 = text_encoder_1 self.text_encoder_2 = text_encoder_2 def encode_prompt_using_clip(self, prompt, max_length, device): text_inputs = self.tokenizer_1( prompt, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, return_tensors="pt", ) prompt_embeds = self.text_encoder_1( text_inputs.input_ids.to(device), attention_mask=text_inputs.attention_mask.to(device), ) return prompt_embeds def encode_prompt_using_llm(self, prompt, max_length, device): y, y_mask = self.text_encoder_2(prompt, max_length=max_length, device=device) return y, y_mask def encode_prompt(self, prompt, positive=True, device="cuda"): prompt = self.process_prompt(prompt, positive=positive) clip_embeds = self.encode_prompt_using_clip(prompt, max_length=77, device=device) llm_embeds, llm_mask = self.encode_prompt_using_llm(prompt, max_length=320, device=device) llm_mask = torch.nn.functional.pad(llm_mask, (clip_embeds.shape[1], 0), value=1) return clip_embeds, llm_embeds, llm_mask