Spaces:
Running
Running
File size: 12,094 Bytes
b613c3c 0e1d4ae b613c3c 0d34ea8 b613c3c d2662cc b613c3c 0d34ea8 b613c3c 0d34ea8 b613c3c 0d34ea8 b613c3c 0d34ea8 b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae b613c3c 0e1d4ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
"""
System monitoring service for Video Model Studio.
Tracks system resources like CPU, memory, and other metrics.
"""
import os
import time
import logging
import platform
import threading
import pandas as pd
from datetime import datetime, timedelta
from collections import deque
from typing import Dict, List, Optional, Tuple, Any
import psutil
from vms.ui.monitoring.services.gpu import GPUMonitoringService
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class MonitoringService:
"""Service for monitoring system resources and performance"""
def __init__(self, history_minutes: int = 10, sample_interval: int = 5):
"""Initialize the monitoring service
Args:
history_minutes: How many minutes of history to keep
sample_interval: How many seconds between samples
"""
self.history_minutes = history_minutes
self.sample_interval = sample_interval
self.max_samples = (history_minutes * 60) // sample_interval
# Initialize data structures for metrics
self.timestamps = deque(maxlen=self.max_samples)
self.cpu_percent = deque(maxlen=self.max_samples)
self.memory_percent = deque(maxlen=self.max_samples)
self.memory_used = deque(maxlen=self.max_samples)
self.memory_available = deque(maxlen=self.max_samples)
# CPU temperature history (might not be available on all systems)
self.cpu_temp = deque(maxlen=self.max_samples)
# Per-core CPU history
self.cpu_cores_percent = {}
# Initialize GPU monitoring service
self.gpu = GPUMonitoringService(history_minutes=history_minutes, sample_interval=sample_interval)
# Track if the monitoring thread is running
self.is_running = False
self.thread = None
# Initialize with current values
self.collect_metrics()
def collect_metrics(self) -> Dict[str, Any]:
"""Collect current system metrics
Returns:
Dictionary of current metrics
"""
metrics = {
'timestamp': datetime.now(),
'cpu_percent': psutil.cpu_percent(interval=0.1),
'memory_percent': psutil.virtual_memory().percent,
'memory_used': psutil.virtual_memory().used / (1024**3), # GB
'memory_available': psutil.virtual_memory().available / (1024**3), # GB
'cpu_temp': None,
'per_cpu_percent': psutil.cpu_percent(interval=0.1, percpu=True)
}
# Try to get CPU temperature (platform specific)
try:
if platform.system() == 'Linux':
# Try to get temperature from psutil
temps = psutil.sensors_temperatures()
for name, entries in temps.items():
if name.startswith(('coretemp', 'k10temp', 'cpu_thermal')):
metrics['cpu_temp'] = entries[0].current
break
elif platform.system() == 'Darwin': # macOS
# On macOS, we could use SMC reader but it requires additional dependencies
# Leaving as None for now
pass
elif platform.system() == 'Windows':
# Windows might require WMI, leaving as None for simplicity
pass
except (AttributeError, KeyError, IndexError, NotImplementedError):
# Sensors not available
pass
return metrics
def update_history(self, metrics: Dict[str, Any]) -> None:
"""Update metric history with new values
Args:
metrics: New metrics to add to history
"""
self.timestamps.append(metrics['timestamp'])
self.cpu_percent.append(metrics['cpu_percent'])
self.memory_percent.append(metrics['memory_percent'])
self.memory_used.append(metrics['memory_used'])
self.memory_available.append(metrics['memory_available'])
if metrics['cpu_temp'] is not None:
self.cpu_temp.append(metrics['cpu_temp'])
# Update per-core CPU metrics
for i, percent in enumerate(metrics['per_cpu_percent']):
if i not in self.cpu_cores_percent:
self.cpu_cores_percent[i] = deque(maxlen=self.max_samples)
self.cpu_cores_percent[i].append(percent)
def start_monitoring(self) -> None:
"""Start background thread for collecting metrics"""
if self.is_running:
logger.warning("Monitoring thread already running")
return
self.is_running = True
# Start GPU monitoring if available
self.gpu.start_monitoring()
def _monitor_loop():
while self.is_running:
try:
metrics = self.collect_metrics()
self.update_history(metrics)
time.sleep(self.sample_interval)
except Exception as e:
logger.error(f"Error in monitoring thread: {str(e)}", exc_info=True)
time.sleep(self.sample_interval)
self.thread = threading.Thread(target=_monitor_loop, daemon=True)
self.thread.start()
logger.info("System monitoring thread started")
def stop_monitoring(self) -> None:
"""Stop the monitoring thread"""
if not self.is_running:
return
self.is_running = False
# Stop GPU monitoring
self.gpu.stop_monitoring()
if self.thread:
self.thread.join(timeout=1.0)
logger.info("System monitoring thread stopped")
def get_current_metrics(self) -> Dict[str, Any]:
"""Get current system metrics
Returns:
Dictionary with current system metrics
"""
return self.collect_metrics()
def get_system_info(self) -> Dict[str, Any]:
"""Get general system information
Returns:
Dictionary with system details
"""
cpu_info = {
'cores_physical': psutil.cpu_count(logical=False),
'cores_logical': psutil.cpu_count(logical=True),
'current_frequency': None,
'architecture': platform.machine(),
}
# Try to get CPU frequency
try:
cpu_freq = psutil.cpu_freq()
if cpu_freq:
cpu_info['current_frequency'] = cpu_freq.current
except Exception:
pass
memory_info = {
'total': psutil.virtual_memory().total / (1024**3), # GB
'available': psutil.virtual_memory().available / (1024**3), # GB
'used': psutil.virtual_memory().used / (1024**3), # GB
'percent': psutil.virtual_memory().percent
}
disk_info = {}
for part in psutil.disk_partitions(all=False):
if os.name == 'nt' and ('cdrom' in part.opts or part.fstype == ''):
# Skip CD-ROM drives on Windows
continue
try:
usage = psutil.disk_usage(part.mountpoint)
disk_info[part.mountpoint] = {
'total': usage.total / (1024**3), # GB
'used': usage.used / (1024**3), # GB
'free': usage.free / (1024**3), # GB
'percent': usage.percent
}
except PermissionError:
continue
sys_info = {
'system': platform.system(),
'version': platform.version(),
'platform': platform.platform(),
'processor': platform.processor(),
'hostname': platform.node(),
'python_version': platform.python_version(),
'uptime': time.time() - psutil.boot_time()
}
return {
'cpu': cpu_info,
'memory': memory_info,
'disk': disk_info,
'system': sys_info,
}
def get_cpu_data(self) -> pd.DataFrame:
"""Get CPU usage data as a DataFrame
Returns:
DataFrame with CPU usage data
"""
if not self.timestamps:
return pd.DataFrame({
'time': list(),
'CPU Usage (%)': list()
})
data = {
'time': list(self.timestamps),
'CPU Usage (%)': list(self.cpu_percent)
}
# Add temperature if available
if self.cpu_temp and len(self.cpu_temp) > 0:
# Ensure temperature data aligns with timestamps
# If fewer temperature readings than timestamps, pad with None
temp_data = list(self.cpu_temp)
if len(temp_data) < len(self.timestamps):
padding = [None] * (len(self.timestamps) - len(temp_data))
temp_data = padding + temp_data
data['CPU Temperature (°C)'] = temp_data
return pd.DataFrame(data)
def get_memory_data(self) -> pd.DataFrame:
"""Get memory usage data as a DataFrame
Returns:
DataFrame with memory usage data
"""
if not self.timestamps:
return pd.DataFrame({
'time': list(),
'Memory Usage (%)': list(),
'Memory Used (GB)': list(),
'Memory Available (GB)': list()
})
return pd.DataFrame({
'time': list(self.timestamps),
'Memory Usage (%)': list(self.memory_percent),
'Memory Used (GB)': list(self.memory_used),
'Memory Available (GB)': list(self.memory_available)
})
def get_per_core_data(self) -> Dict[int, pd.DataFrame]:
"""Get per-core CPU usage data as DataFrames
Returns:
Dictionary of DataFrames with per-core CPU usage data
"""
if not self.timestamps or not self.cpu_cores_percent:
return {}
core_data = {}
for core_id, percentages in self.cpu_cores_percent.items():
# Ensure we don't have more data points than timestamps
data_length = min(len(percentages), len(self.timestamps))
core_data[core_id] = pd.DataFrame({
'time': list(self.timestamps)[-data_length:],
f'Core {core_id} Usage (%)': list(percentages)[-data_length:]
})
return core_data
# Replace matplotlib methods with DataFrame methods
# This method is kept for backward compatibility but returns a DataFrame
def generate_cpu_plot(self) -> pd.DataFrame:
"""Get CPU usage data for plotting
Returns:
DataFrame with CPU usage data
"""
return self.get_cpu_data()
# This method is kept for backward compatibility but returns a DataFrame
def generate_memory_plot(self) -> pd.DataFrame:
"""Get memory usage data for plotting
Returns:
DataFrame with memory usage data
"""
return self.get_memory_data()
# This method is kept for backward compatibility but returns a DataFrame of all cores
def generate_per_core_plot(self) -> pd.DataFrame:
"""Get per-core CPU usage data for plotting
Returns:
Combined DataFrame with all cores' usage data
"""
core_data = self.get_per_core_data()
if not core_data:
return pd.DataFrame()
# Combine all core data into a single DataFrame using the first core's timestamps
first_core_id = list(core_data.keys())[0]
combined_df = core_data[first_core_id][['time']].copy()
for core_id, df in core_data.items():
combined_df[f'Core {core_id} Usage (%)'] = df[f'Core {core_id} Usage (%)']
return combined_df |