Spaces:
Running
Running
File size: 56,522 Bytes
0ad7e2a 38cfbff 0ad7e2a f3d03c6 d2662cc a3e57a3 64a70c0 0ad7e2a 89bbef2 b7cc217 48d6121 c6546ad 7c52128 2ba9257 48d6121 c6546ad 0ad7e2a ab45a2c 0ad7e2a ed18efe 0ad7e2a d2662cc ab45a2c 0ad7e2a d2662cc 0ad7e2a ab45a2c d2662cc ab45a2c d2662cc ab45a2c d2662cc d464085 0ad7e2a d464085 0ad7e2a 48d6121 0ad7e2a d464085 2ba9257 48d6121 2ba9257 48d6121 2ba9257 48d6121 2ba9257 48d6121 2ba9257 48d6121 2ba9257 48d6121 2ba9257 48d6121 2ba9257 48d6121 2ba9257 48d6121 2ba9257 d464085 0ad7e2a c6546ad 0ad7e2a c6546ad 0ad7e2a c6546ad 0ad7e2a 7c52128 910a853 7c52128 a3e57a3 0ad7e2a ed18efe 9000726 ed18efe b7cc217 ed18efe 9000726 ed18efe 0d34ea8 f1c60d3 0d34ea8 ed18efe 0ad7e2a ed18efe 0ad7e2a ed18efe 0ad7e2a 61a25f0 a3e57a3 48d6121 a3e57a3 b7cc217 a3e57a3 b7cc217 a3e57a3 4f5cf39 a3e57a3 48d6121 a3e57a3 48d6121 a3e57a3 b7cc217 a3e57a3 4f5cf39 a3e57a3 48d6121 a3e57a3 0ad7e2a 48d6121 0ad7e2a d2662cc 48d6121 61a25f0 0ad7e2a 48d6121 d464085 48d6121 d464085 d2662cc 61a25f0 d2662cc d464085 d2662cc d464085 c6546ad d464085 48d6121 0ad7e2a 7c52128 f1c60d3 0d34ea8 f1c60d3 0d34ea8 7c52128 0ad7e2a 2ba9257 0ad7e2a c6546ad 0ad7e2a 48d6121 0ad7e2a a3e57a3 0ad7e2a a3e57a3 d464085 0ad7e2a c6546ad 0ad7e2a a3e57a3 c6546ad 0ad7e2a 64a70c0 0ad7e2a c6546ad 0ad7e2a c6546ad 0ad7e2a 64a70c0 0ad7e2a c6546ad 0ad7e2a c6546ad 0ad7e2a 64a70c0 f3d03c6 c8cb798 f3d03c6 d2662cc ab45a2c 48d6121 246c64e ab45a2c 48d6121 ab45a2c 246c64e ab45a2c 48d6121 ab45a2c 48d6121 ab45a2c 246c64e 1042322 48d6121 d2662cc 2236e6f 1042322 c8589f9 b7cc217 64a70c0 b7cc217 c8589f9 b7cc217 a3e57a3 2236e6f c8589f9 3822049 c8589f9 3822049 2236e6f c8589f9 d464085 1042322 c8589f9 c8cb798 7c52128 b7cc217 7c52128 c8589f9 7c52128 d2662cc ab45a2c d2662cc ab45a2c 246c64e 61a25f0 d2662cc ab45a2c d2662cc ab45a2c d2662cc ab45a2c d2662cc ab45a2c d2662cc 2ba9257 48d6121 2ba9257 48d6121 2ba9257 48d6121 2ba9257 d2662cc 2ba9257 d2662cc 48d6121 2ba9257 d2662cc d464085 c6546ad 48d6121 d464085 f3d03c6 d464085 2ba9257 d464085 f3d03c6 d464085 c6546ad 48d6121 d464085 f3d03c6 2ba9257 d464085 d2662cc 48d6121 d464085 f3d03c6 d2662cc 2ba9257 d464085 f3d03c6 64a70c0 f3d03c6 64a70c0 48d6121 64a70c0 48d6121 2ba9257 48d6121 d2662cc 64a70c0 c8cb798 64a70c0 c8589f9 c8cb798 c8589f9 64a70c0 c8589f9 64a70c0 c8589f9 64a70c0 38cfbff 64a70c0 c6546ad 64a70c0 adc5756 38cfbff c6546ad b7cc217 a3e57a3 c6546ad 64a70c0 adc5756 c6546ad ed18efe c6546ad adc5756 a3e57a3 9000726 a3e57a3 c6546ad a3e57a3 c6546ad a3e57a3 c6546ad c8cb798 c6546ad c8cb798 c6546ad c8cb798 c6546ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 |
"""
Train tab for Video Model Studio UI with improved task progress display
"""
import gradio as gr
import logging
import os
import json
import shutil
from typing import Dict, Any, List, Optional, Tuple
from pathlib import Path
from vms.utils import BaseTab
from vms.config import (
ASK_USER_TO_DUPLICATE_SPACE,
SD_TRAINING_BUCKETS, MD_TRAINING_BUCKETS,
RESOLUTION_OPTIONS,
TRAINING_TYPES, MODEL_TYPES, MODEL_VERSIONS,
DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P,
DEFAULT_LEARNING_RATE,
DEFAULT_LORA_RANK, DEFAULT_LORA_ALPHA,
DEFAULT_LORA_RANK_STR, DEFAULT_LORA_ALPHA_STR,
DEFAULT_SEED,
DEFAULT_NUM_GPUS,
DEFAULT_MAX_GPUS,
DEFAULT_PRECOMPUTATION_ITEMS,
DEFAULT_NB_TRAINING_STEPS,
DEFAULT_NB_LR_WARMUP_STEPS,
DEFAULT_AUTO_RESUME,
DEFAULT_CONTROL_TYPE, DEFAULT_TRAIN_QK_NORM,
DEFAULT_FRAME_CONDITIONING_TYPE, DEFAULT_FRAME_CONDITIONING_INDEX,
DEFAULT_FRAME_CONDITIONING_CONCATENATE_MASK,
HUNYUAN_VIDEO_DEFAULTS, LTX_VIDEO_DEFAULTS, WAN_DEFAULTS
)
logger = logging.getLogger(__name__)
class TrainTab(BaseTab):
"""Train tab for model training"""
def __init__(self, app_state):
super().__init__(app_state)
self.id = "train_tab"
self.title = "3️⃣ Train"
def create(self, parent=None) -> gr.TabItem:
"""Create the Train tab UI components"""
with gr.TabItem(self.title, id=self.id) as tab:
with gr.Row():
with gr.Column():
with gr.Row():
self.components["train_title"] = gr.Markdown("## 0 files in the training dataset")
with gr.Row():
with gr.Column():
# Get the default model type from the first preset
default_model_type = list(MODEL_TYPES.keys())[0]
self.components["model_type"] = gr.Dropdown(
choices=list(MODEL_TYPES.keys()),
label="Model Type",
value=default_model_type,
interactive=True
)
# Get model versions for the default model type
default_model_versions = self.get_model_version_choices(default_model_type)
default_model_version = self.get_default_model_version(default_model_type)
# Ensure default_model_versions is not empty
if not default_model_versions:
# If no versions found for default model, use a fallback
internal_type = MODEL_TYPES.get(default_model_type)
if internal_type in MODEL_VERSIONS:
default_model_versions = list(MODEL_VERSIONS[internal_type].keys())
else:
# Last resort - collect all available versions from all models
default_model_versions = []
for model_versions in MODEL_VERSIONS.values():
default_model_versions.extend(list(model_versions.keys()))
# If still empty, provide a placeholder
if not default_model_versions:
default_model_versions = ["-- No versions available --"]
# Set default version to first in list if available
if default_model_versions:
default_model_version = default_model_versions[0]
else:
default_model_version = ""
self.components["model_version"] = gr.Dropdown(
choices=default_model_versions,
label="Model Version",
value=default_model_version,
interactive=True,
allow_custom_value=True # Add this to avoid errors with custom values
)
self.components["training_type"] = gr.Dropdown(
choices=list(TRAINING_TYPES.keys()),
label="Training Type",
value=list(TRAINING_TYPES.keys())[0]
)
with gr.Row():
self.components["model_info"] = gr.Markdown(
value=self.get_model_info(list(MODEL_TYPES.keys())[0], list(TRAINING_TYPES.keys())[0])
)
with gr.Row():
with gr.Column():
self.components["resolution"] = gr.Dropdown(
choices=list(RESOLUTION_OPTIONS.keys()),
label="Resolution",
value=list(RESOLUTION_OPTIONS.keys())[0],
info="Select the resolution for training videos"
)
# LoRA specific parameters (will show/hide based on training type)
with gr.Row(visible=True) as lora_params_row:
self.components["lora_params_row"] = lora_params_row
with gr.Column():
gr.Markdown("""
## 🔄 LoRA Training Parameters
LoRA (Low-Rank Adaptation) trains small adapter matrices instead of the full model, requiring much less memory while still achieving great results.
""")
# Second row for actual LoRA parameters
with gr.Row(visible=True) as lora_settings_row:
self.components["lora_settings_row"] = lora_settings_row
with gr.Column():
self.components["lora_rank"] = gr.Dropdown(
label="LoRA Rank",
choices=["16", "32", "64", "128", "256", "512", "1024"],
value=DEFAULT_LORA_RANK_STR,
type="value",
info="Controls the size and expressiveness of LoRA adapters. Higher values = better quality but larger file size"
)
with gr.Accordion("What is LoRA Rank?", open=False):
gr.Markdown("""
**LoRA Rank** determines the complexity of the LoRA adapters:
- **Lower rank (16-32)**: Smaller file size, faster training, but less expressive
- **Medium rank (64-128)**: Good balance between quality and file size
- **Higher rank (256-1024)**: More expressive adapters, better quality but larger file size
Think of rank as the "capacity" of your adapter. Higher ranks can learn more complex modifications to the base model but require more VRAM during training and result in larger files.
**Quick guide:**
- For Wan models: Use 32-64 (Wan models work well with lower ranks)
- For LTX-Video: Use 128-256
- For Hunyuan Video: Use 128
""")
with gr.Column():
self.components["lora_alpha"] = gr.Dropdown(
label="LoRA Alpha",
choices=["16", "32", "64", "128", "256", "512", "1024"],
value=DEFAULT_LORA_ALPHA_STR,
type="value",
info="Controls the effective learning rate scaling of LoRA adapters. Usually set to same value as rank"
)
with gr.Accordion("What is LoRA Alpha?", open=False):
gr.Markdown("""
**LoRA Alpha** controls the effective scale of the LoRA updates:
- The actual scaling factor is calculated as `alpha ÷ rank`
- Usually set to match the rank value (alpha = rank)
- Higher alpha = stronger effect from the adapters
- Lower alpha = more subtle adapter influence
**Best practice:**
- For most cases, set alpha equal to rank
- For more aggressive training, set alpha higher than rank
- For more conservative training, set alpha lower than rank
""")
# Control specific parameters (will show/hide based on training type)
with gr.Row(visible=False) as control_params_row:
self.components["control_params_row"] = control_params_row
with gr.Column():
gr.Markdown("""
## 🖼️ Control Training Settings
Control training enables **image-to-video generation** by teaching the model how to use an image as a guide for video creation.
This is ideal for turning still images into dynamic videos while preserving composition, style, and content.
""")
# Second row for control parameters
with gr.Row(visible=False) as control_settings_row:
self.components["control_settings_row"] = control_settings_row
with gr.Column():
self.components["control_type"] = gr.Dropdown(
label="Control Type",
choices=["canny", "custom"],
value=DEFAULT_CONTROL_TYPE,
info="Type of control conditioning. 'canny' uses edge detection preprocessing, 'custom' allows direct image conditioning."
)
with gr.Accordion("What is Control Conditioning?", open=False):
gr.Markdown("""
**Control Conditioning** allows the model to be guided by an input image, adapting the video generation based on the image content. This is used for image-to-video generation where you want to turn an image into a moving video while maintaining its style, composition or content.
- **canny**: Uses edge detection to extract outlines from images for structure-preserving video generation
- **custom**: Direct image conditioning without preprocessing, preserving more image details
""")
with gr.Column():
self.components["train_qk_norm"] = gr.Checkbox(
label="Train QK Normalization Layers",
value=DEFAULT_TRAIN_QK_NORM,
info="Enable to train query-key normalization layers for better control signal integration"
)
with gr.Accordion("What is QK Normalization?", open=False):
gr.Markdown("""
**QK Normalization** refers to normalizing the query and key values in the attention mechanism of transformers.
- When enabled, allows the model to better integrate control signals with content generation
- Improves training stability for control models
- Generally recommended for control training, especially with image conditioning
""")
with gr.Row(visible=False) as frame_conditioning_row:
self.components["frame_conditioning_row"] = frame_conditioning_row
with gr.Column():
self.components["frame_conditioning_type"] = gr.Dropdown(
label="Frame Conditioning Type",
choices=["index", "prefix", "random", "first_and_last", "full"],
value=DEFAULT_FRAME_CONDITIONING_TYPE,
info="Determines which frames receive conditioning during training"
)
with gr.Accordion("Frame Conditioning Type Explanation", open=False):
gr.Markdown("""
**Frame Conditioning Types** determine which frames in the video receive image conditioning:
- **index**: Only applies conditioning to a single frame at the specified index
- **prefix**: Applies conditioning to all frames before a certain point
- **random**: Randomly selects frames to receive conditioning during training
- **first_and_last**: Only applies conditioning to the first and last frames
- **full**: Applies conditioning to all frames in the video
For image-to-video tasks, 'index' (usually with index 0) is most common as it conditions only the first frame.
""")
with gr.Column():
self.components["frame_conditioning_index"] = gr.Number(
label="Frame Conditioning Index",
value=DEFAULT_FRAME_CONDITIONING_INDEX,
precision=0,
info="Specifies which frame receives conditioning when using 'index' type (0 = first frame)"
)
with gr.Row(visible=False) as control_options_row:
self.components["control_options_row"] = control_options_row
with gr.Column():
self.components["frame_conditioning_concatenate_mask"] = gr.Checkbox(
label="Concatenate Frame Mask",
value=DEFAULT_FRAME_CONDITIONING_CONCATENATE_MASK,
info="Enable to add frame mask information to the conditioning channels"
)
with gr.Accordion("What is Frame Mask Concatenation?", open=False):
gr.Markdown("""
**Frame Mask Concatenation** adds an additional channel to the control signal that indicates which frames are being conditioned:
- Creates a binary mask (0/1) indicating which frames receive conditioning
- Helps the model distinguish between conditioned and unconditioned frames
- Particularly useful for 'index' conditioning where only select frames are conditioned
- Generally improves temporal consistency between conditioned and unconditioned frames
""")
with gr.Column():
# Empty column for layout balance
pass
with gr.Row():
self.components["train_steps"] = gr.Number(
label="Number of Training Steps",
value=DEFAULT_NB_TRAINING_STEPS,
minimum=1,
precision=0
)
self.components["batch_size"] = gr.Number(
label="Batch Size",
value=1,
minimum=1,
precision=0
)
with gr.Row():
self.components["learning_rate"] = gr.Number(
label="Learning Rate",
value=DEFAULT_LEARNING_RATE,
minimum=1e-8
)
self.components["save_iterations"] = gr.Number(
label="Save checkpoint every N iterations",
value=DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
minimum=1,
precision=0,
info="Model will be saved periodically after these many steps"
)
with gr.Row():
self.components["num_gpus"] = gr.Slider(
label="Number of GPUs to use",
value=DEFAULT_NUM_GPUS,
minimum=1,
maximum=DEFAULT_MAX_GPUS,
step=1,
info="Number of GPUs to use for training"
)
self.components["precomputation_items"] = gr.Number(
label="Precomputation Items",
value=DEFAULT_PRECOMPUTATION_ITEMS,
minimum=1,
precision=0,
info="Should be more or less the number of total items (ex: 200 videos), divided by the number of GPUs"
)
with gr.Row():
self.components["lr_warmup_steps"] = gr.Number(
label="Learning Rate Warmup Steps",
value=DEFAULT_NB_LR_WARMUP_STEPS,
minimum=0,
precision=0,
info="Number of warmup steps (typically 20-40% of total training steps). This helps reducing the impact of early training examples as well as giving time to optimizers to compute accurate statistics."
)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
# Add description of the training buttons
self.components["training_buttons_info"] = gr.Markdown("""
## ⚗️ Train your model on your dataset
- **🚀 Start new training**: Begins training from scratch (clears previous checkpoints)
- **🛸 Start from latest checkpoint**: Continues training from the most recent checkpoint
""")
with gr.Row():
# Check for existing checkpoints to determine button text
checkpoints = list(self.app.output_path.glob("finetrainers_step_*"))
has_checkpoints = len(checkpoints) > 0
self.components["start_btn"] = gr.Button(
"🚀 Start new training",
variant="primary",
interactive=not ASK_USER_TO_DUPLICATE_SPACE
)
# Add new button for continuing from checkpoint
self.components["resume_btn"] = gr.Button(
"🛸 Start from latest checkpoint",
variant="primary",
interactive=has_checkpoints and not ASK_USER_TO_DUPLICATE_SPACE
)
with gr.Row():
# Just use stop and pause buttons for now to ensure compatibility
self.components["stop_btn"] = gr.Button(
"Stop at Last Checkpoint",
variant="primary",
interactive=False
)
self.components["pause_resume_btn"] = gr.Button(
"Resume Training",
variant="secondary",
interactive=False,
visible=False
)
# Add delete checkpoints button
self.components["delete_checkpoints_btn"] = gr.Button(
"Delete All Checkpoints",
variant="stop",
interactive=has_checkpoints
)
with gr.Row():
self.components["auto_resume"] = gr.Checkbox(
label="Automatically continue training in case of server reboot.",
value=DEFAULT_AUTO_RESUME,
info="When enabled, training will automatically resume from the latest checkpoint after app restart"
)
with gr.Row():
with gr.Column():
self.components["status_box"] = gr.Textbox(
label="Training Status",
interactive=False,
lines=4
)
# Add new component for current task progress
self.components["current_task_box"] = gr.Textbox(
label="Current Task Progress",
interactive=False,
lines=3,
elem_id="current_task_display"
)
with gr.Accordion("Finetrainers output (or see app logs for more details)", open=False):
self.components["log_box"] = gr.TextArea(
#label="",
interactive=False,
lines=60,
max_lines=600,
autoscroll=True
)
return tab
def update_model_type_and_version(self, model_type: str, model_version: str):
"""Update both model type and version together to keep them in sync"""
# Get internal model type
internal_type = MODEL_TYPES.get(model_type)
# Make sure model_version is valid for this model type
if internal_type and internal_type in MODEL_VERSIONS:
valid_versions = list(MODEL_VERSIONS[internal_type].keys())
if not model_version or model_version not in valid_versions:
if valid_versions:
model_version = valid_versions[0]
# Update UI state with both values to keep them in sync
self.app.update_ui_state(model_type=model_type, model_version=model_version)
return None
def save_model_version(self, model_type: str, model_version: str):
"""Save model version ensuring it's consistent with model type"""
internal_type = MODEL_TYPES.get(model_type)
# Verify the model_version is compatible with the current model_type
if internal_type and internal_type in MODEL_VERSIONS:
valid_versions = MODEL_VERSIONS[internal_type].keys()
if model_version not in valid_versions:
# Don't save incompatible version
return None
# Save the model version along with current model type to ensure consistency
self.app.update_ui_state(model_type=model_type, model_version=model_version)
return None
def handle_new_training_start(
self, model_type, model_version, training_type,
lora_rank, lora_alpha, train_steps, batch_size, learning_rate,
save_iterations, repo_id, progress=gr.Progress()
):
"""Handle new training start with checkpoint cleanup"""
# Clear output directory to start fresh
# Delete all checkpoint directories
for checkpoint in self.app.output_path.glob("finetrainers_step_*"):
if checkpoint.is_dir():
shutil.rmtree(checkpoint)
# Also delete session.json which contains previous training info
session_file = self.app.output_path / "session.json"
if session_file.exists():
session_file.unlink()
self.app.training.append_log("Cleared previous checkpoints for new training session")
# Start training normally
return self.handle_training_start(
model_type, model_version, training_type,
lora_rank, lora_alpha, train_steps, batch_size, learning_rate,
save_iterations, repo_id, progress
)
def handle_resume_training(
self, model_type, model_version, training_type,
lora_rank, lora_alpha, train_steps, batch_size, learning_rate,
save_iterations, repo_id, progress=gr.Progress()
):
"""Handle resuming training from the latest checkpoint"""
# Find the latest checkpoint
checkpoints = list(self.app.output_path.glob("finetrainers_step_*"))
if not checkpoints:
return "No checkpoints found to resume from", "Please start a new training session instead"
self.app.training.append_log(f"Resuming training from latest checkpoint")
# Start training with the checkpoint
return self.handle_training_start(
model_type, model_version, training_type,
lora_rank, lora_alpha, train_steps, batch_size, learning_rate,
save_iterations, repo_id, progress,
resume_from_checkpoint="latest"
)
def connect_events(self) -> None:
"""Connect event handlers to UI components"""
# Model type change event - Update model version dropdown choices and default parameters
self.components["model_type"].change(
fn=self.update_model_versions,
inputs=[self.components["model_type"]],
outputs=[self.components["model_version"]]
).then(
fn=self.update_model_type_and_version,
inputs=[self.components["model_type"], self.components["model_version"]],
outputs=[]
).then(
# Update model info and recommended default values based on model and training type
fn=self.update_model_info,
inputs=[self.components["model_type"], self.components["training_type"]],
outputs=[
self.components["model_info"],
self.components["train_steps"],
self.components["batch_size"],
self.components["learning_rate"],
self.components["save_iterations"],
self.components["lora_params_row"],
self.components["lora_settings_row"],
self.components["control_params_row"],
self.components["control_settings_row"],
self.components["frame_conditioning_row"],
self.components["control_options_row"],
self.components["lora_rank"],
self.components["lora_alpha"]
]
)
# Model version change event
self.components["model_version"].change(
fn=self.save_model_version, # Replace with this new function
inputs=[self.components["model_type"], self.components["model_version"]],
outputs=[]
)
# Training type change event
self.components["training_type"].change(
fn=lambda v: self.app.update_ui_state(training_type=v),
inputs=[self.components["training_type"]],
outputs=[]
).then(
fn=self.update_model_info,
inputs=[self.components["model_type"], self.components["training_type"]],
outputs=[
self.components["model_info"],
self.components["train_steps"],
self.components["batch_size"],
self.components["learning_rate"],
self.components["save_iterations"],
self.components["lora_params_row"],
self.components["lora_settings_row"],
self.components["control_params_row"],
self.components["control_settings_row"],
self.components["frame_conditioning_row"],
self.components["control_options_row"],
self.components["lora_rank"],
self.components["lora_alpha"]
]
)
self.components["auto_resume"].change(
fn=lambda v: self.app.update_ui_state(auto_resume=v),
inputs=[self.components["auto_resume"]],
outputs=[]
)
# Add in the connect_events() method:
self.components["num_gpus"].change(
fn=lambda v: self.app.update_ui_state(num_gpus=v),
inputs=[self.components["num_gpus"]],
outputs=[]
)
self.components["precomputation_items"].change(
fn=lambda v: self.app.update_ui_state(precomputation_items=v),
inputs=[self.components["precomputation_items"]],
outputs=[]
)
self.components["lr_warmup_steps"].change(
fn=lambda v: self.app.update_ui_state(lr_warmup_steps=v),
inputs=[self.components["lr_warmup_steps"]],
outputs=[]
)
# Training parameters change events
self.components["lora_rank"].change(
fn=lambda v: self.app.update_ui_state(lora_rank=v),
inputs=[self.components["lora_rank"]],
outputs=[]
)
self.components["lora_alpha"].change(
fn=lambda v: self.app.update_ui_state(lora_alpha=v),
inputs=[self.components["lora_alpha"]],
outputs=[]
)
# Control parameters change events
self.components["control_type"].change(
fn=lambda v: self.app.update_ui_state(control_type=v),
inputs=[self.components["control_type"]],
outputs=[]
)
self.components["train_qk_norm"].change(
fn=lambda v: self.app.update_ui_state(train_qk_norm=v),
inputs=[self.components["train_qk_norm"]],
outputs=[]
)
self.components["frame_conditioning_type"].change(
fn=lambda v: self.app.update_ui_state(frame_conditioning_type=v),
inputs=[self.components["frame_conditioning_type"]],
outputs=[]
)
self.components["frame_conditioning_index"].change(
fn=lambda v: self.app.update_ui_state(frame_conditioning_index=v),
inputs=[self.components["frame_conditioning_index"]],
outputs=[]
)
self.components["frame_conditioning_concatenate_mask"].change(
fn=lambda v: self.app.update_ui_state(frame_conditioning_concatenate_mask=v),
inputs=[self.components["frame_conditioning_concatenate_mask"]],
outputs=[]
)
self.components["train_steps"].change(
fn=lambda v: self.app.update_ui_state(train_steps=v),
inputs=[self.components["train_steps"]],
outputs=[]
)
self.components["batch_size"].change(
fn=lambda v: self.app.update_ui_state(batch_size=v),
inputs=[self.components["batch_size"]],
outputs=[]
)
self.components["learning_rate"].change(
fn=lambda v: self.app.update_ui_state(learning_rate=v),
inputs=[self.components["learning_rate"]],
outputs=[]
)
self.components["save_iterations"].change(
fn=lambda v: self.app.update_ui_state(save_iterations=v),
inputs=[self.components["save_iterations"]],
outputs=[]
)
# Resolution change event
self.components["resolution"].change(
fn=lambda v: self.app.update_ui_state(resolution=v),
inputs=[self.components["resolution"]],
outputs=[]
)
# Training control events
self.components["start_btn"].click(
fn=self.handle_new_training_start,
inputs=[
self.components["model_type"],
self.components["model_version"],
self.components["training_type"],
self.components["lora_rank"],
self.components["lora_alpha"],
self.components["train_steps"],
self.components["batch_size"],
self.components["learning_rate"],
self.components["save_iterations"],
self.app.tabs["manage_tab"].components["repo_id"]
],
outputs=[
self.components["status_box"],
self.components["log_box"]
]
)
self.components["resume_btn"].click(
fn=self.handle_resume_training,
inputs=[
self.components["model_type"],
self.components["model_version"],
self.components["training_type"],
self.components["lora_rank"],
self.components["lora_alpha"],
self.components["train_steps"],
self.components["batch_size"],
self.components["learning_rate"],
self.components["save_iterations"],
self.app.tabs["manage_tab"].components["repo_id"]
],
outputs=[
self.components["status_box"],
self.components["log_box"]
]
)
# Use simplified event handlers for pause/resume and stop
third_btn = self.components["delete_checkpoints_btn"] if "delete_checkpoints_btn" in self.components else self.components["pause_resume_btn"]
self.components["pause_resume_btn"].click(
fn=self.handle_pause_resume,
outputs=[
self.components["status_box"],
self.components["log_box"],
self.components["current_task_box"],
self.components["start_btn"],
self.components["stop_btn"],
third_btn
]
)
self.components["stop_btn"].click(
fn=self.handle_stop,
outputs=[
self.components["status_box"],
self.components["log_box"],
self.components["current_task_box"],
self.components["start_btn"],
self.components["stop_btn"],
third_btn
]
)
# Add an event handler for delete_checkpoints_btn
self.components["delete_checkpoints_btn"].click(
fn=lambda: self.app.training.delete_all_checkpoints(),
outputs=[self.components["status_box"]]
)
def update_model_versions(self, model_type: str) -> Dict:
"""Update model version choices based on selected model type"""
try:
# Get version choices for this model type
model_versions = self.get_model_version_choices(model_type)
# Get default version
default_version = self.get_default_model_version(model_type)
logger.info(f"update_model_versions({model_type}): default_version = {default_version}, available versions: {model_versions}")
# Update UI state with proper model_type first
self.app.update_ui_state(model_type=model_type)
# Create a list of tuples (label, value) for the dropdown choices
# This ensures compatibility with Gradio Dropdown component expectations
choices_tuples = [(str(version), str(version)) for version in model_versions]
# Create a new dropdown with the updated choices
if not choices_tuples:
logger.warning(f"No model versions available for {model_type}, using empty list")
# Return empty dropdown to avoid errors
return gr.Dropdown(choices=[], value=None)
# Ensure default_version is in model_versions
string_versions = [str(v) for v in model_versions]
if default_version not in string_versions and string_versions:
default_version = string_versions[0]
logger.info(f"Default version not in choices, using first available: {default_version}")
# Return the updated dropdown
logger.info(f"Returning dropdown with {len(choices_tuples)} choices")
return gr.Dropdown(choices=choices_tuples, value=default_version)
except Exception as e:
# Log any exceptions for debugging
logger.error(f"Error in update_model_versions: {str(e)}")
# Return empty dropdown to avoid errors
return gr.Dropdown(choices=[], value=None)
def handle_training_start(
self, model_type, model_version, training_type,
lora_rank, lora_alpha, train_steps, batch_size, learning_rate,
save_iterations, repo_id,
progress=gr.Progress(),
resume_from_checkpoint=None,
):
"""Handle training start with proper log parser reset and checkpoint detection"""
# Safely reset log parser if it exists
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
self.app.log_parser.reset()
else:
logger.warning("Log parser not initialized, creating a new one")
from ..utils import TrainingLogParser
self.app.log_parser = TrainingLogParser()
# Check for latest checkpoint
checkpoints = list(self.app.output_path.glob("finetrainers_step_*"))
has_checkpoints = len(checkpoints) > 0
resume_from = resume_from_checkpoint # Use the passed parameter
if resume_from and checkpoints:
# Find the latest checkpoint
latest_checkpoint = max(checkpoints, key=os.path.getmtime)
resume_from = str(latest_checkpoint)
logger.info(f"Found checkpoint at {resume_from}, note from @julian: right now let's just resume training at 'latest'")
result_from = "latest"
# Convert model_type display name to internal name
model_internal_type = MODEL_TYPES.get(model_type)
if not model_internal_type:
logger.error(f"Invalid model type: {model_type}")
return f"Error: Invalid model type '{model_type}'", "Model type not recognized"
# Convert training_type display name to internal name
training_internal_type = TRAINING_TYPES.get(training_type)
if not training_internal_type:
logger.error(f"Invalid training type: {training_type}")
return f"Error: Invalid training type '{training_type}'", "Training type not recognized"
# Get other parameters from UI form
num_gpus = int(self.components["num_gpus"].value)
precomputation_items = int(self.components["precomputation_items"].value)
lr_warmup_steps = int(self.components["lr_warmup_steps"].value)
# Start training (it will automatically use the checkpoint if provided)
try:
return self.app.training.start_training(
model_internal_type,
lora_rank,
lora_alpha,
train_steps,
batch_size,
learning_rate,
save_iterations,
repo_id,
training_type=training_internal_type,
model_version=model_version,
resume_from_checkpoint=resume_from,
num_gpus=num_gpus,
precomputation_items=precomputation_items,
lr_warmup_steps=lr_warmup_steps,
progress=progress
)
except Exception as e:
logger.exception("Error starting training")
return f"Error starting training: {str(e)}", f"Exception: {str(e)}\n\nCheck the logs for more details."
def get_model_version_choices(self, model_type: str) -> List[str]:
"""Get model version choices based on model type"""
# Convert UI display name to internal name
internal_type = MODEL_TYPES.get(model_type)
if not internal_type or internal_type not in MODEL_VERSIONS:
logger.warning(f"No model versions found for {model_type} (internal type: {internal_type})")
return []
# Return just the model IDs as a list of simple strings
version_ids = list(MODEL_VERSIONS.get(internal_type, {}).keys())
logger.info(f"Found {len(version_ids)} versions for {model_type}: {version_ids}")
# Ensure they're all strings
return [str(version) for version in version_ids]
def get_default_model_version(self, model_type: str) -> str:
"""Get default model version for the given model type"""
# Convert UI display name to internal name
internal_type = MODEL_TYPES.get(model_type)
logger.debug(f"get_default_model_version({model_type}) = {internal_type}")
if not internal_type or internal_type not in MODEL_VERSIONS:
logger.warning(f"No valid model versions found for {model_type}")
return ""
# Get the first version available for this model type
versions = list(MODEL_VERSIONS.get(internal_type, {}).keys())
if versions:
default_version = versions[0]
logger.debug(f"Default version for {model_type}: {default_version}")
return default_version
return ""
def update_model_info(self, model_type: str, training_type: str) -> Dict:
"""Update model info and related UI components based on model type and training type"""
# Get model info text
model_info = self.get_model_info(model_type, training_type)
# Add general information about the selected training type
if training_type == "Full Finetune":
finetune_info = """
## 🧠 Full Finetune Mode
Full finetune mode trains all parameters of the model, requiring more VRAM but potentially enabling higher quality results.
- Requires 20-50GB+ VRAM depending on model
- Creates a complete standalone model (~8GB+ file size)
- Recommended only for high-end GPUs (A100, H100, etc.)
- Not recommended for the larger models like Hunyuan Video on consumer hardware
"""
model_info = finetune_info + "\n\n" + model_info
# Get default parameters for this model type and training type
params = self.get_default_params(MODEL_TYPES.get(model_type), TRAINING_TYPES.get(training_type))
# Check if LoRA params should be visible
show_lora_params = training_type in ["LoRA Finetune", "Control LoRA"]
# Check if Control-specific params should be visible
show_control_params = training_type in ["Control LoRA", "Control Full Finetune"]
# Return updates for UI components
return {
self.components["model_info"]: model_info,
self.components["train_steps"]: params["train_steps"],
self.components["batch_size"]: params["batch_size"],
self.components["learning_rate"]: params["learning_rate"],
self.components["save_iterations"]: params["save_iterations"],
self.components["lora_rank"]: params["lora_rank"],
self.components["lora_alpha"]: params["lora_alpha"],
self.components["lora_params_row"]: gr.Row(visible=show_lora_params),
self.components["lora_settings_row"]: gr.Row(visible=show_lora_params),
self.components["control_params_row"]: gr.Row(visible=show_control_params),
self.components["control_settings_row"]: gr.Row(visible=show_control_params),
self.components["frame_conditioning_row"]: gr.Row(visible=show_control_params),
self.components["control_options_row"]: gr.Row(visible=show_control_params)
}
def get_model_info(self, model_type: str, training_type: str) -> str:
"""Get information about the selected model type and training method"""
if model_type == "HunyuanVideo":
base_info = """## HunyuanVideo Training
- Required VRAM: ~48GB minimum
- Recommended batch size: 1-2
- Typical training time: 2-4 hours
- Default resolution: 49x512x768"""
if training_type == "LoRA Finetune":
return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)"
elif training_type == "Control LoRA":
return base_info + "\n- Required VRAM: ~20GB minimum\n- Default LoRA rank: 128 (~400 MB)\n- Supports image conditioning"
elif training_type == "Control Full Finetune":
return base_info + "\n- Required VRAM: ~50GB minimum\n- Supports image conditioning\n- **Not recommended due to VRAM requirements**"
else:
return base_info + "\n- Required VRAM: ~48GB minimum\n- **Full finetune not recommended due to VRAM requirements**"
elif model_type == "LTX-Video":
base_info = """## LTX-Video Training
- Recommended batch size: 1-4
- Typical training time: 1-3 hours
- Default resolution: 49x512x768"""
if training_type == "LoRA Finetune":
return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)"
elif training_type == "Control LoRA":
return base_info + "\n- Required VRAM: ~20GB minimum\n- Default LoRA rank: 128 (~400 MB)\n- Supports image conditioning"
elif training_type == "Control Full Finetune":
return base_info + "\n- Required VRAM: ~23GB minimum\n- Supports image conditioning"
else:
return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB"
elif model_type == "Wan":
base_info = """## Wan2.1 Training
- Recommended batch size: 1-4
- Typical training time: 1-3 hours
- Default resolution: 49x512x768"""
if training_type == "LoRA Finetune":
return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)"
elif training_type == "Control LoRA":
return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 32 (~120 MB)\n- Supports image conditioning"
elif training_type == "Control Full Finetune":
return base_info + "\n- Required VRAM: ~40GB minimum\n- Supports image conditioning\n- **Not recommended due to VRAM requirements**"
else:
return base_info + "\n- **Full finetune not recommended due to VRAM requirements**"
# Default fallback
return f"### {model_type}\nPlease check documentation for VRAM requirements and recommended settings."
def get_default_params(self, model_type: str, training_type: str) -> Dict[str, Any]:
"""Get default training parameters for model type"""
# Use model-specific defaults based on model_type and training_type
model_defaults = {}
if model_type == "hunyuan_video" and training_type in HUNYUAN_VIDEO_DEFAULTS:
model_defaults = HUNYUAN_VIDEO_DEFAULTS[training_type]
elif model_type == "ltx_video" and training_type in LTX_VIDEO_DEFAULTS:
model_defaults = LTX_VIDEO_DEFAULTS[training_type]
elif model_type == "wan" and training_type in WAN_DEFAULTS:
model_defaults = WAN_DEFAULTS[training_type]
# Build the complete params dict with defaults plus model-specific overrides
params = {
"train_steps": DEFAULT_NB_TRAINING_STEPS,
"batch_size": DEFAULT_BATCH_SIZE,
"learning_rate": DEFAULT_LEARNING_RATE,
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
"lora_rank": DEFAULT_LORA_RANK_STR,
"lora_alpha": DEFAULT_LORA_ALPHA_STR
}
# Override with model-specific values
params.update(model_defaults)
return params
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
"""Get latest status message, log content, and status code in a safer way"""
state = self.app.training.get_status()
logs = self.app.training.get_logs()
# Check if training process died unexpectedly
training_died = False
if state["status"] == "training" and not self.app.training.is_training_running():
state["status"] = "error"
state["message"] = "Training process terminated unexpectedly."
training_died = True
# Look for error in logs
error_lines = []
for line in logs.splitlines():
if "Error:" in line or "Exception:" in line or "Traceback" in line:
error_lines.append(line)
if error_lines:
state["message"] += f"\n\nPossible error: {error_lines[-1]}"
# Ensure log parser is initialized
if not hasattr(self.app, 'log_parser') or self.app.log_parser is None:
from ..utils import TrainingLogParser
self.app.log_parser = TrainingLogParser()
logger.info("Initialized missing log parser")
# Parse new log lines
if logs and not training_died:
last_state = None
for line in logs.splitlines():
try:
state_update = self.app.log_parser.parse_line(line)
if state_update:
last_state = state_update
except Exception as e:
logger.error(f"Error parsing log line: {str(e)}")
continue
if last_state:
ui_updates = self.update_training_ui(last_state)
state["message"] = ui_updates.get("status_box", state["message"])
# Parse status for training state
if "completed" in state["message"].lower():
state["status"] = "completed"
elif "error" in state["message"].lower():
state["status"] = "error"
elif "failed" in state["message"].lower():
state["status"] = "error"
elif "stopped" in state["message"].lower():
state["status"] = "stopped"
# Add the current task info if available
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
state["current_task"] = self.app.log_parser.get_current_task_display()
return (state["status"], state["message"], logs)
def get_status_updates(self):
"""Get status updates for text components (no variant property)"""
status, message, logs = self.get_latest_status_message_and_logs()
# Get current task if available
current_task = ""
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
current_task = self.app.log_parser.get_current_task_display()
return message, logs, current_task
def get_button_updates(self):
"""Get button updates (with variant property)"""
status, _, _ = self.get_latest_status_message_and_logs()
# Add checkpoints detection
checkpoints = list(self.app.output_path.glob("finetrainers_step_*"))
has_checkpoints = len(checkpoints) > 0
is_training = status in ["training", "initializing"]
is_completed = status in ["completed", "error", "stopped"]
# Create button updates
start_btn = gr.Button(
value="🚀 Start new training",
interactive=not is_training,
variant="primary" if not is_training else "secondary"
)
resume_btn = gr.Button(
value="🛸 Start from latest checkpoint",
interactive=has_checkpoints and not is_training,
variant="primary" if not is_training else "secondary"
)
stop_btn = gr.Button(
value="Stop at Last Checkpoint",
interactive=is_training,
variant="primary" if is_training else "secondary"
)
# Add delete_checkpoints_btn
delete_checkpoints_btn = gr.Button(
"Delete All Checkpoints",
interactive=has_checkpoints and not is_training,
variant="stop"
)
return start_btn, resume_btn, stop_btn, delete_checkpoints_btn
def update_training_ui(self, training_state: Dict[str, Any]):
"""Update UI components based on training state"""
updates = {}
# Update status box with high-level information
status_text = []
if training_state["status"] != "idle":
status_text.extend([
f"Status: {training_state['status']}",
f"Progress: {training_state['progress']}",
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
f"Time elapsed: {training_state['elapsed']}",
f"Estimated remaining: {training_state['remaining']}",
"",
f"Current loss: {training_state['step_loss']}",
f"Learning rate: {training_state['learning_rate']}",
f"Gradient norm: {training_state['grad_norm']}",
f"Memory usage: {training_state['memory']}"
])
if training_state["error_message"]:
status_text.append(f"\nError: {training_state['error_message']}")
updates["status_box"] = "\n".join(status_text)
# Add current task information to the dedicated box
if training_state.get("current_task"):
updates["current_task_box"] = training_state["current_task"]
else:
updates["current_task_box"] = "No active task" if training_state["status"] != "training" else "Waiting for task information..."
return updates
def handle_pause_resume(self):
"""Handle pause/resume button click"""
status, _, _ = self.get_latest_status_message_and_logs()
if status == "paused":
self.app.training.resume_training()
else:
self.app.training.pause_training()
# Return the updates separately for text and buttons
return (*self.get_status_updates(), *self.get_button_updates())
def handle_stop(self):
"""Handle stop button click"""
self.app.training.stop_training()
# Return the updates separately for text and buttons
return (*self.get_status_updates(), *self.get_button_updates()) |