File size: 56,522 Bytes
0ad7e2a
38cfbff
0ad7e2a
 
 
 
f3d03c6
d2662cc
a3e57a3
64a70c0
 
0ad7e2a
89bbef2
 
b7cc217
48d6121
 
 
c6546ad
 
 
 
7c52128
 
 
 
 
 
 
2ba9257
 
 
48d6121
 
c6546ad
0ad7e2a
 
 
 
 
 
 
 
 
ab45a2c
0ad7e2a
 
 
 
 
 
 
ed18efe
0ad7e2a
 
 
d2662cc
 
ab45a2c
0ad7e2a
 
 
d2662cc
 
0ad7e2a
ab45a2c
d2662cc
 
 
ab45a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2662cc
 
 
 
ab45a2c
 
d2662cc
 
d464085
 
 
 
 
 
 
0ad7e2a
d464085
0ad7e2a
48d6121
 
 
 
 
 
 
 
 
0ad7e2a
d464085
 
 
2ba9257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d6121
 
 
 
 
 
 
 
 
 
 
 
2ba9257
 
 
 
 
 
 
 
 
 
 
 
48d6121
 
 
 
 
 
 
 
 
 
 
2ba9257
48d6121
2ba9257
 
 
 
 
 
48d6121
 
 
 
2ba9257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d6121
 
 
 
2ba9257
 
 
 
 
 
 
 
 
 
 
48d6121
 
 
 
 
2ba9257
 
 
 
 
 
 
 
 
 
 
 
 
 
48d6121
 
 
 
 
 
 
 
 
2ba9257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d6121
2ba9257
48d6121
 
 
 
2ba9257
 
 
 
 
d464085
0ad7e2a
c6546ad
 
 
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
c6546ad
 
0ad7e2a
 
 
c6546ad
 
0ad7e2a
 
 
7c52128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
910a853
7c52128
a3e57a3
 
 
0ad7e2a
ed18efe
 
 
 
 
9000726
 
ed18efe
 
 
 
b7cc217
ed18efe
 
 
 
 
 
 
 
 
 
9000726
ed18efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d34ea8
f1c60d3
0d34ea8
 
 
 
 
ed18efe
 
 
 
 
 
 
 
 
 
 
0ad7e2a
ed18efe
 
0ad7e2a
ed18efe
 
 
 
 
 
 
 
 
0ad7e2a
 
 
61a25f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e57a3
48d6121
a3e57a3
 
 
 
 
 
 
b7cc217
a3e57a3
 
 
 
b7cc217
a3e57a3
 
 
4f5cf39
a3e57a3
 
 
48d6121
a3e57a3
 
 
 
 
48d6121
a3e57a3
 
 
 
 
b7cc217
a3e57a3
 
 
 
4f5cf39
 
a3e57a3
 
48d6121
a3e57a3
 
 
 
 
0ad7e2a
 
48d6121
0ad7e2a
d2662cc
 
 
 
48d6121
61a25f0
0ad7e2a
 
48d6121
 
d464085
48d6121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d464085
 
d2662cc
 
61a25f0
 
d2662cc
 
 
d464085
 
 
 
 
 
d2662cc
d464085
 
 
c6546ad
d464085
 
 
48d6121
 
 
 
 
 
 
 
0ad7e2a
 
7c52128
f1c60d3
0d34ea8
f1c60d3
0d34ea8
 
 
7c52128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
2ba9257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad7e2a
c6546ad
 
 
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d6121
 
 
 
0ad7e2a
 
 
 
 
a3e57a3
0ad7e2a
 
a3e57a3
d464085
0ad7e2a
 
c6546ad
0ad7e2a
 
 
 
 
 
 
 
 
 
 
a3e57a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6546ad
 
 
0ad7e2a
64a70c0
0ad7e2a
 
 
c6546ad
0ad7e2a
 
c6546ad
0ad7e2a
 
 
 
64a70c0
0ad7e2a
 
 
c6546ad
0ad7e2a
 
c6546ad
0ad7e2a
64a70c0
f3d03c6
 
 
c8cb798
f3d03c6
 
d2662cc
 
 
ab45a2c
 
 
 
 
 
 
 
 
 
 
48d6121
 
 
246c64e
ab45a2c
48d6121
ab45a2c
 
 
246c64e
ab45a2c
48d6121
 
 
ab45a2c
 
 
48d6121
 
ab45a2c
 
 
 
 
246c64e
1042322
48d6121
d2662cc
2236e6f
 
 
1042322
c8589f9
b7cc217
64a70c0
 
 
 
 
 
 
b7cc217
c8589f9
b7cc217
a3e57a3
2236e6f
c8589f9
3822049
c8589f9
 
 
3822049
 
 
2236e6f
c8589f9
 
 
 
 
 
 
d464085
 
 
 
 
 
 
1042322
 
 
 
 
c8589f9
 
c8cb798
7c52128
 
 
 
 
 
 
 
 
b7cc217
7c52128
 
 
 
 
c8589f9
 
 
 
7c52128
d2662cc
 
 
 
 
ab45a2c
d2662cc
 
ab45a2c
 
 
246c64e
 
 
61a25f0
d2662cc
 
 
 
ab45a2c
 
d2662cc
ab45a2c
d2662cc
 
 
ab45a2c
d2662cc
ab45a2c
 
 
d2662cc
 
 
 
 
 
 
2ba9257
 
 
48d6121
2ba9257
48d6121
2ba9257
48d6121
 
 
 
2ba9257
 
 
d2662cc
 
 
 
2ba9257
 
 
 
d2662cc
 
 
 
 
 
 
 
48d6121
 
2ba9257
 
 
 
 
 
d2662cc
 
d464085
 
c6546ad
48d6121
 
 
 
 
d464085
f3d03c6
d464085
2ba9257
 
 
 
d464085
f3d03c6
d464085
c6546ad
48d6121
 
 
 
d464085
f3d03c6
 
2ba9257
 
 
 
d464085
 
 
d2662cc
48d6121
 
 
 
d464085
f3d03c6
d2662cc
2ba9257
 
 
 
d464085
 
f3d03c6
 
 
64a70c0
f3d03c6
64a70c0
48d6121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a70c0
48d6121
 
2ba9257
48d6121
d2662cc
 
64a70c0
 
c8cb798
 
64a70c0
c8589f9
 
 
c8cb798
c8589f9
 
 
 
 
 
 
 
 
 
 
 
 
64a70c0
 
 
 
 
 
 
c8589f9
64a70c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8589f9
 
 
 
 
 
64a70c0
38cfbff
 
 
 
64a70c0
 
c6546ad
 
64a70c0
adc5756
38cfbff
 
 
 
 
c6546ad
 
 
 
 
 
 
b7cc217
a3e57a3
c6546ad
64a70c0
 
adc5756
c6546ad
 
ed18efe
c6546ad
 
 
adc5756
a3e57a3
9000726
a3e57a3
 
 
 
c6546ad
 
 
 
 
 
a3e57a3
 
 
 
 
 
c6546ad
a3e57a3
 
c6546ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8cb798
c6546ad
c8cb798
c6546ad
 
 
 
 
 
c8cb798
c6546ad
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
"""
Train tab for Video Model Studio UI with improved task progress display
"""

import gradio as gr
import logging
import os
import json
import shutil
from typing import Dict, Any, List, Optional, Tuple
from pathlib import Path

from vms.utils import BaseTab
from vms.config import (
    ASK_USER_TO_DUPLICATE_SPACE,
    SD_TRAINING_BUCKETS, MD_TRAINING_BUCKETS,
    RESOLUTION_OPTIONS,
    TRAINING_TYPES, MODEL_TYPES, MODEL_VERSIONS,
    DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
    DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P,
    DEFAULT_LEARNING_RATE,
    DEFAULT_LORA_RANK, DEFAULT_LORA_ALPHA,
    DEFAULT_LORA_RANK_STR, DEFAULT_LORA_ALPHA_STR,
    DEFAULT_SEED,
    DEFAULT_NUM_GPUS,
    DEFAULT_MAX_GPUS,
    DEFAULT_PRECOMPUTATION_ITEMS,
    DEFAULT_NB_TRAINING_STEPS,
    DEFAULT_NB_LR_WARMUP_STEPS,
    DEFAULT_AUTO_RESUME,
    DEFAULT_CONTROL_TYPE, DEFAULT_TRAIN_QK_NORM,
    DEFAULT_FRAME_CONDITIONING_TYPE, DEFAULT_FRAME_CONDITIONING_INDEX,
    DEFAULT_FRAME_CONDITIONING_CONCATENATE_MASK,
    HUNYUAN_VIDEO_DEFAULTS, LTX_VIDEO_DEFAULTS, WAN_DEFAULTS
)

logger = logging.getLogger(__name__)

class TrainTab(BaseTab):
    """Train tab for model training"""
    
    def __init__(self, app_state):
        super().__init__(app_state)
        self.id = "train_tab"
        self.title = "3️⃣ Train"
    
    def create(self, parent=None) -> gr.TabItem:
        """Create the Train tab UI components"""
        with gr.TabItem(self.title, id=self.id) as tab:
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        self.components["train_title"] = gr.Markdown("## 0 files in the training dataset")

                    with gr.Row():
                        with gr.Column():
                            # Get the default model type from the first preset
                            default_model_type = list(MODEL_TYPES.keys())[0]

                            self.components["model_type"] = gr.Dropdown(
                                choices=list(MODEL_TYPES.keys()),
                                label="Model Type",
                                value=default_model_type,
                                interactive=True
                            )

                            # Get model versions for the default model type
                            default_model_versions = self.get_model_version_choices(default_model_type)
                            default_model_version = self.get_default_model_version(default_model_type)

                            # Ensure default_model_versions is not empty
                            if not default_model_versions:
                                # If no versions found for default model, use a fallback
                                internal_type = MODEL_TYPES.get(default_model_type)
                                if internal_type in MODEL_VERSIONS:
                                    default_model_versions = list(MODEL_VERSIONS[internal_type].keys())
                                else:
                                    # Last resort - collect all available versions from all models
                                    default_model_versions = []
                                    for model_versions in MODEL_VERSIONS.values():
                                        default_model_versions.extend(list(model_versions.keys()))
                                    
                                # If still empty, provide a placeholder
                                if not default_model_versions:
                                    default_model_versions = ["-- No versions available --"]
                                    
                                # Set default version to first in list if available
                                if default_model_versions:
                                    default_model_version = default_model_versions[0]
                                else:
                                    default_model_version = ""

                            self.components["model_version"] = gr.Dropdown(
                                choices=default_model_versions,
                                label="Model Version",
                                value=default_model_version,
                                interactive=True,
                                allow_custom_value=True  # Add this to avoid errors with custom values
                            )
                            
                            self.components["training_type"] = gr.Dropdown(
                                choices=list(TRAINING_TYPES.keys()),
                                label="Training Type",
                                value=list(TRAINING_TYPES.keys())[0]
                            )

                    with gr.Row():
                        self.components["model_info"] = gr.Markdown(
                            value=self.get_model_info(list(MODEL_TYPES.keys())[0], list(TRAINING_TYPES.keys())[0])
                        )
                    
                    with gr.Row():
                        with gr.Column():
                            self.components["resolution"] = gr.Dropdown(
                                choices=list(RESOLUTION_OPTIONS.keys()),
                                label="Resolution",
                                value=list(RESOLUTION_OPTIONS.keys())[0],
                                info="Select the resolution for training videos"
                            )

                    # LoRA specific parameters (will show/hide based on training type)
                    with gr.Row(visible=True) as lora_params_row:
                        self.components["lora_params_row"] = lora_params_row
                        with gr.Column():
                            gr.Markdown("""
                            ## 🔄 LoRA Training Parameters
                            
                            LoRA (Low-Rank Adaptation) trains small adapter matrices instead of the full model, requiring much less memory while still achieving great results.
                            """)
                    
                    # Second row for actual LoRA parameters
                    with gr.Row(visible=True) as lora_settings_row:
                        self.components["lora_settings_row"] = lora_settings_row
                        with gr.Column():
                            self.components["lora_rank"] = gr.Dropdown(
                                label="LoRA Rank",
                                choices=["16", "32", "64", "128", "256", "512", "1024"],
                                value=DEFAULT_LORA_RANK_STR,
                                type="value",
                                info="Controls the size and expressiveness of LoRA adapters. Higher values = better quality but larger file size"
                            )
                            
                            with gr.Accordion("What is LoRA Rank?", open=False):
                                gr.Markdown("""
**LoRA Rank** determines the complexity of the LoRA adapters:

- **Lower rank (16-32)**: Smaller file size, faster training, but less expressive
- **Medium rank (64-128)**: Good balance between quality and file size
- **Higher rank (256-1024)**: More expressive adapters, better quality but larger file size

Think of rank as the "capacity" of your adapter. Higher ranks can learn more complex modifications to the base model but require more VRAM during training and result in larger files.

**Quick guide:**
- For Wan models: Use 32-64 (Wan models work well with lower ranks)
- For LTX-Video: Use 128-256
- For Hunyuan Video: Use 128
                                """)
                        
                        with gr.Column():
                            self.components["lora_alpha"] = gr.Dropdown(
                                label="LoRA Alpha",
                                choices=["16", "32", "64", "128", "256", "512", "1024"],
                                value=DEFAULT_LORA_ALPHA_STR,
                                type="value",
                                info="Controls the effective learning rate scaling of LoRA adapters. Usually set to same value as rank"
                            )
                            with gr.Accordion("What is LoRA Alpha?", open=False):
                                gr.Markdown("""
**LoRA Alpha** controls the effective scale of the LoRA updates:

- The actual scaling factor is calculated as `alpha ÷ rank`
- Usually set to match the rank value (alpha = rank)
- Higher alpha = stronger effect from the adapters
- Lower alpha = more subtle adapter influence

**Best practice:**
- For most cases, set alpha equal to rank
- For more aggressive training, set alpha higher than rank
- For more conservative training, set alpha lower than rank
                                """)
                                
                        
                    # Control specific parameters (will show/hide based on training type)
                    with gr.Row(visible=False) as control_params_row:
                        self.components["control_params_row"] = control_params_row
                        with gr.Column():
                            gr.Markdown("""
## 🖼️ Control Training Settings

Control training enables **image-to-video generation** by teaching the model how to use an image as a guide for video creation. 
This is ideal for turning still images into dynamic videos while preserving composition, style, and content.
                            """)
                    
                    # Second row for control parameters
                    with gr.Row(visible=False) as control_settings_row:
                        self.components["control_settings_row"] = control_settings_row
                        with gr.Column():
                            self.components["control_type"] = gr.Dropdown(
                                label="Control Type",
                                choices=["canny", "custom"],
                                value=DEFAULT_CONTROL_TYPE,
                                info="Type of control conditioning. 'canny' uses edge detection preprocessing, 'custom' allows direct image conditioning."
                            )
                            
                            with gr.Accordion("What is Control Conditioning?", open=False):
                                gr.Markdown("""
**Control Conditioning** allows the model to be guided by an input image, adapting the video generation based on the image content. This is used for image-to-video generation where you want to turn an image into a moving video while maintaining its style, composition or content.

- **canny**: Uses edge detection to extract outlines from images for structure-preserving video generation
- **custom**: Direct image conditioning without preprocessing, preserving more image details
                                """)
                        
                        with gr.Column():
                            self.components["train_qk_norm"] = gr.Checkbox(
                                label="Train QK Normalization Layers",
                                value=DEFAULT_TRAIN_QK_NORM,
                                info="Enable to train query-key normalization layers for better control signal integration"
                            )
                            
                            with gr.Accordion("What is QK Normalization?", open=False):
                                gr.Markdown("""
**QK Normalization** refers to normalizing the query and key values in the attention mechanism of transformers.

- When enabled, allows the model to better integrate control signals with content generation
- Improves training stability for control models
- Generally recommended for control training, especially with image conditioning
                                """)
                    
                    with gr.Row(visible=False) as frame_conditioning_row:
                        self.components["frame_conditioning_row"] = frame_conditioning_row
                        with gr.Column():
                            self.components["frame_conditioning_type"] = gr.Dropdown(
                                label="Frame Conditioning Type",
                                choices=["index", "prefix", "random", "first_and_last", "full"],
                                value=DEFAULT_FRAME_CONDITIONING_TYPE,
                                info="Determines which frames receive conditioning during training"
                            )
                            
                            with gr.Accordion("Frame Conditioning Type Explanation", open=False):
                                gr.Markdown("""
**Frame Conditioning Types** determine which frames in the video receive image conditioning:

- **index**: Only applies conditioning to a single frame at the specified index
- **prefix**: Applies conditioning to all frames before a certain point
- **random**: Randomly selects frames to receive conditioning during training
- **first_and_last**: Only applies conditioning to the first and last frames
- **full**: Applies conditioning to all frames in the video

For image-to-video tasks, 'index' (usually with index 0) is most common as it conditions only the first frame.
                                """)
                        
                        with gr.Column():
                            self.components["frame_conditioning_index"] = gr.Number(
                                label="Frame Conditioning Index",
                                value=DEFAULT_FRAME_CONDITIONING_INDEX,
                                precision=0,
                                info="Specifies which frame receives conditioning when using 'index' type (0 = first frame)"
                            )
                    
                    with gr.Row(visible=False) as control_options_row:
                        self.components["control_options_row"] = control_options_row
                        with gr.Column():
                            self.components["frame_conditioning_concatenate_mask"] = gr.Checkbox(
                                label="Concatenate Frame Mask",
                                value=DEFAULT_FRAME_CONDITIONING_CONCATENATE_MASK,
                                info="Enable to add frame mask information to the conditioning channels"
                            )
                            
                            with gr.Accordion("What is Frame Mask Concatenation?", open=False):
                                gr.Markdown("""
**Frame Mask Concatenation** adds an additional channel to the control signal that indicates which frames are being conditioned:
                                
- Creates a binary mask (0/1) indicating which frames receive conditioning
- Helps the model distinguish between conditioned and unconditioned frames
- Particularly useful for 'index' conditioning where only select frames are conditioned
- Generally improves temporal consistency between conditioned and unconditioned frames
                                """)
                                
                        with gr.Column():
                            # Empty column for layout balance
                            pass
                    
                    with gr.Row():
                        self.components["train_steps"] = gr.Number(
                            label="Number of Training Steps",
                            value=DEFAULT_NB_TRAINING_STEPS,
                            minimum=1,
                            precision=0
                        )
                        self.components["batch_size"] = gr.Number(
                            label="Batch Size",
                            value=1,
                            minimum=1,
                            precision=0
                        )
                    with gr.Row():
                        self.components["learning_rate"] = gr.Number(
                            label="Learning Rate",
                            value=DEFAULT_LEARNING_RATE,
                            minimum=1e-8
                        )
                        self.components["save_iterations"] = gr.Number(
                            label="Save checkpoint every N iterations",
                            value=DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
                            minimum=1,
                            precision=0,
                            info="Model will be saved periodically after these many steps"
                        )
                    with gr.Row():
                        self.components["num_gpus"] = gr.Slider(
                            label="Number of GPUs to use",
                            value=DEFAULT_NUM_GPUS,
                            minimum=1,
                            maximum=DEFAULT_MAX_GPUS,
                            step=1,
                            info="Number of GPUs to use for training"
                        )
                        self.components["precomputation_items"] = gr.Number(
                            label="Precomputation Items",
                            value=DEFAULT_PRECOMPUTATION_ITEMS,
                            minimum=1,
                            precision=0,
                            info="Should be more or less the number of total items (ex: 200 videos), divided by the number of GPUs"
                        )
                    with gr.Row():
                        self.components["lr_warmup_steps"] = gr.Number(
                            label="Learning Rate Warmup Steps",
                            value=DEFAULT_NB_LR_WARMUP_STEPS,
                            minimum=0,
                            precision=0,
                            info="Number of warmup steps (typically 20-40% of total training steps). This helps reducing the impact of early training examples as well as giving time to optimizers to compute accurate statistics."
                        )

                with gr.Row():
                    with gr.Column():

                        with gr.Row():  
                            with gr.Column():
                                # Add description of the training buttons
                                self.components["training_buttons_info"] = gr.Markdown("""
                                ## ⚗️ Train your model on your dataset
                                - **🚀 Start new training**: Begins training from scratch (clears previous checkpoints)
                                - **🛸 Start from latest checkpoint**: Continues training from the most recent checkpoint
                                """)
                                
                                with gr.Row():
                                    # Check for existing checkpoints to determine button text
                                    checkpoints = list(self.app.output_path.glob("finetrainers_step_*"))
                                    has_checkpoints = len(checkpoints) > 0

                                    self.components["start_btn"] = gr.Button(
                                        "🚀 Start new training",
                                        variant="primary",
                                        interactive=not ASK_USER_TO_DUPLICATE_SPACE
                                    )
                                    
                                    # Add new button for continuing from checkpoint
                                    self.components["resume_btn"] = gr.Button(
                                        "🛸 Start from latest checkpoint",
                                        variant="primary", 
                                        interactive=has_checkpoints and not ASK_USER_TO_DUPLICATE_SPACE
                                    )
                                    
                                with gr.Row():
                                    # Just use stop and pause buttons for now to ensure compatibility
                                    self.components["stop_btn"] = gr.Button(
                                        "Stop at Last Checkpoint",
                                        variant="primary",
                                        interactive=False
                                    )
                                    
                                    self.components["pause_resume_btn"] = gr.Button(
                                        "Resume Training",
                                        variant="secondary",
                                        interactive=False,
                                        visible=False
                                    )
                                    
                                    # Add delete checkpoints button
                                    self.components["delete_checkpoints_btn"] = gr.Button(
                                        "Delete All Checkpoints",
                                        variant="stop",
                                        interactive=has_checkpoints
                                    )

                                with gr.Row():
                                    self.components["auto_resume"] = gr.Checkbox(
                                        label="Automatically continue training in case of server reboot.",
                                        value=DEFAULT_AUTO_RESUME,
                                        info="When enabled, training will automatically resume from the latest checkpoint after app restart"
                                    )

                        with gr.Row():
                            with gr.Column():
                                self.components["status_box"] = gr.Textbox(
                                    label="Training Status",
                                    interactive=False,
                                    lines=4
                                )
                                
                                # Add new component for current task progress
                                self.components["current_task_box"] = gr.Textbox(
                                    label="Current Task Progress",
                                    interactive=False,
                                    lines=3,
                                    elem_id="current_task_display"
                                )
                                
                                with gr.Accordion("Finetrainers output (or see app logs for more details)", open=False):
                                    self.components["log_box"] = gr.TextArea(
                                        #label="",
                                        interactive=False,
                                        lines=60,
                                        max_lines=600,
                                        autoscroll=True
                                    )
                    
        return tab
    
    def update_model_type_and_version(self, model_type: str, model_version: str):
        """Update both model type and version together to keep them in sync"""
        # Get internal model type
        internal_type = MODEL_TYPES.get(model_type)
        
        # Make sure model_version is valid for this model type
        if internal_type and internal_type in MODEL_VERSIONS:
            valid_versions = list(MODEL_VERSIONS[internal_type].keys())
            if not model_version or model_version not in valid_versions:
                if valid_versions:
                    model_version = valid_versions[0]
        
        # Update UI state with both values to keep them in sync
        self.app.update_ui_state(model_type=model_type, model_version=model_version)
        return None

    def save_model_version(self, model_type: str, model_version: str):
        """Save model version ensuring it's consistent with model type"""
        internal_type = MODEL_TYPES.get(model_type)
        
        # Verify the model_version is compatible with the current model_type
        if internal_type and internal_type in MODEL_VERSIONS:
            valid_versions = MODEL_VERSIONS[internal_type].keys()
            if model_version not in valid_versions:
                # Don't save incompatible version
                return None
                
        # Save the model version along with current model type to ensure consistency
        self.app.update_ui_state(model_type=model_type, model_version=model_version)
        return None

    def handle_new_training_start(
        self, model_type, model_version, training_type, 
        lora_rank, lora_alpha, train_steps, batch_size, learning_rate, 
        save_iterations, repo_id, progress=gr.Progress()
    ):
        """Handle new training start with checkpoint cleanup"""
        # Clear output directory to start fresh

        # Delete all checkpoint directories
        for checkpoint in self.app.output_path.glob("finetrainers_step_*"):
            if checkpoint.is_dir():
                shutil.rmtree(checkpoint)
                
        # Also delete session.json which contains previous training info
        session_file = self.app.output_path / "session.json"
        if session_file.exists():
            session_file.unlink()
        
        self.app.training.append_log("Cleared previous checkpoints for new training session")
        
        # Start training normally
        return self.handle_training_start(
            model_type, model_version, training_type, 
            lora_rank, lora_alpha, train_steps, batch_size, learning_rate, 
            save_iterations, repo_id, progress
        )

    def handle_resume_training(
        self, model_type, model_version, training_type, 
        lora_rank, lora_alpha, train_steps, batch_size, learning_rate, 
        save_iterations, repo_id, progress=gr.Progress()
    ):
        """Handle resuming training from the latest checkpoint"""
        # Find the latest checkpoint
        checkpoints = list(self.app.output_path.glob("finetrainers_step_*"))

        if not checkpoints:
            return "No checkpoints found to resume from", "Please start a new training session instead"
        
        self.app.training.append_log(f"Resuming training from latest checkpoint")
    
        # Start training with the checkpoint
        return self.handle_training_start(
            model_type, model_version, training_type, 
            lora_rank, lora_alpha, train_steps, batch_size, learning_rate, 
            save_iterations, repo_id, progress, 
            resume_from_checkpoint="latest"
        )

    def connect_events(self) -> None:
        """Connect event handlers to UI components"""
        # Model type change event - Update model version dropdown choices and default parameters
        self.components["model_type"].change(
            fn=self.update_model_versions,
            inputs=[self.components["model_type"]],
            outputs=[self.components["model_version"]]
        ).then(
            fn=self.update_model_type_and_version,
            inputs=[self.components["model_type"], self.components["model_version"]],
            outputs=[]
        ).then(
            # Update model info and recommended default values based on model and training type
            fn=self.update_model_info,
            inputs=[self.components["model_type"], self.components["training_type"]],
            outputs=[
                self.components["model_info"],
                self.components["train_steps"],
                self.components["batch_size"],
                self.components["learning_rate"],
                self.components["save_iterations"],
                self.components["lora_params_row"],
                self.components["lora_settings_row"],
                self.components["control_params_row"],
                self.components["control_settings_row"],
                self.components["frame_conditioning_row"],
                self.components["control_options_row"],
                self.components["lora_rank"],
                self.components["lora_alpha"]
            ]
        )
        
        # Model version change event
        self.components["model_version"].change(
            fn=self.save_model_version,  # Replace with this new function
            inputs=[self.components["model_type"], self.components["model_version"]],
            outputs=[]
        )
            
        # Training type change event
        self.components["training_type"].change(
            fn=lambda v: self.app.update_ui_state(training_type=v),
            inputs=[self.components["training_type"]],
            outputs=[]
        ).then(
            fn=self.update_model_info,
            inputs=[self.components["model_type"], self.components["training_type"]],
            outputs=[
                self.components["model_info"],
                self.components["train_steps"],
                self.components["batch_size"],
                self.components["learning_rate"],
                self.components["save_iterations"],
                self.components["lora_params_row"],
                self.components["lora_settings_row"],
                self.components["control_params_row"],
                self.components["control_settings_row"],
                self.components["frame_conditioning_row"],
                self.components["control_options_row"],
                self.components["lora_rank"],
                self.components["lora_alpha"]
            ]
        )

        self.components["auto_resume"].change(
            fn=lambda v: self.app.update_ui_state(auto_resume=v),
            inputs=[self.components["auto_resume"]],
            outputs=[]
        )

        # Add in the connect_events() method:
        self.components["num_gpus"].change(
            fn=lambda v: self.app.update_ui_state(num_gpus=v),
            inputs=[self.components["num_gpus"]],
            outputs=[]
        )

        self.components["precomputation_items"].change(
            fn=lambda v: self.app.update_ui_state(precomputation_items=v),
            inputs=[self.components["precomputation_items"]],
            outputs=[]
        )

        self.components["lr_warmup_steps"].change(
            fn=lambda v: self.app.update_ui_state(lr_warmup_steps=v),
            inputs=[self.components["lr_warmup_steps"]],
            outputs=[]
        )
                
        # Training parameters change events
        self.components["lora_rank"].change(
            fn=lambda v: self.app.update_ui_state(lora_rank=v),
            inputs=[self.components["lora_rank"]],
            outputs=[]
        )

        self.components["lora_alpha"].change(
            fn=lambda v: self.app.update_ui_state(lora_alpha=v),
            inputs=[self.components["lora_alpha"]],
            outputs=[]
        )
        
        # Control parameters change events
        self.components["control_type"].change(
            fn=lambda v: self.app.update_ui_state(control_type=v),
            inputs=[self.components["control_type"]],
            outputs=[]
        )
        
        self.components["train_qk_norm"].change(
            fn=lambda v: self.app.update_ui_state(train_qk_norm=v),
            inputs=[self.components["train_qk_norm"]],
            outputs=[]
        )
        
        self.components["frame_conditioning_type"].change(
            fn=lambda v: self.app.update_ui_state(frame_conditioning_type=v),
            inputs=[self.components["frame_conditioning_type"]],
            outputs=[]
        )
        
        self.components["frame_conditioning_index"].change(
            fn=lambda v: self.app.update_ui_state(frame_conditioning_index=v),
            inputs=[self.components["frame_conditioning_index"]],
            outputs=[]
        )
        
        self.components["frame_conditioning_concatenate_mask"].change(
            fn=lambda v: self.app.update_ui_state(frame_conditioning_concatenate_mask=v),
            inputs=[self.components["frame_conditioning_concatenate_mask"]],
            outputs=[]
        )

        self.components["train_steps"].change(
            fn=lambda v: self.app.update_ui_state(train_steps=v),
            inputs=[self.components["train_steps"]],
            outputs=[]
        )

        self.components["batch_size"].change(
            fn=lambda v: self.app.update_ui_state(batch_size=v),
            inputs=[self.components["batch_size"]],
            outputs=[]
        )

        self.components["learning_rate"].change(
            fn=lambda v: self.app.update_ui_state(learning_rate=v),
            inputs=[self.components["learning_rate"]],
            outputs=[]
        )

        self.components["save_iterations"].change(
            fn=lambda v: self.app.update_ui_state(save_iterations=v),
            inputs=[self.components["save_iterations"]],
            outputs=[]
        )
        
        # Resolution change event
        self.components["resolution"].change(
            fn=lambda v: self.app.update_ui_state(resolution=v),
            inputs=[self.components["resolution"]],
            outputs=[]
        )
        
        # Training control events
        self.components["start_btn"].click(
            fn=self.handle_new_training_start,
            inputs=[
                self.components["model_type"],
                self.components["model_version"],
                self.components["training_type"],
                self.components["lora_rank"],
                self.components["lora_alpha"],
                self.components["train_steps"],
                self.components["batch_size"],
                self.components["learning_rate"],
                self.components["save_iterations"],
                self.app.tabs["manage_tab"].components["repo_id"]
            ],
            outputs=[
                self.components["status_box"],
                self.components["log_box"]
            ]
        )

        self.components["resume_btn"].click(
            fn=self.handle_resume_training,
            inputs=[
                self.components["model_type"],
                self.components["model_version"],
                self.components["training_type"],
                self.components["lora_rank"],
                self.components["lora_alpha"],
                self.components["train_steps"],
                self.components["batch_size"],
                self.components["learning_rate"],
                self.components["save_iterations"],
                self.app.tabs["manage_tab"].components["repo_id"]
            ],
            outputs=[
                self.components["status_box"],
                self.components["log_box"]
            ]
        )
        

        # Use simplified event handlers for pause/resume and stop
        third_btn = self.components["delete_checkpoints_btn"] if "delete_checkpoints_btn" in self.components else self.components["pause_resume_btn"]
        
        self.components["pause_resume_btn"].click(
            fn=self.handle_pause_resume,
            outputs=[
                self.components["status_box"],
                self.components["log_box"],
                self.components["current_task_box"],
                self.components["start_btn"],
                self.components["stop_btn"],
                third_btn
            ]
        )

        self.components["stop_btn"].click(
            fn=self.handle_stop,
            outputs=[
                self.components["status_box"],
                self.components["log_box"],
                self.components["current_task_box"],
                self.components["start_btn"],
                self.components["stop_btn"],
                third_btn
            ]
        )

        # Add an event handler for delete_checkpoints_btn
        self.components["delete_checkpoints_btn"].click(
            fn=lambda: self.app.training.delete_all_checkpoints(),
            outputs=[self.components["status_box"]]
        )
    
    def update_model_versions(self, model_type: str) -> Dict:
        """Update model version choices based on selected model type"""
        try:
            # Get version choices for this model type
            model_versions = self.get_model_version_choices(model_type)
            
            # Get default version
            default_version = self.get_default_model_version(model_type)
            logger.info(f"update_model_versions({model_type}): default_version = {default_version}, available versions: {model_versions}")
            
            # Update UI state with proper model_type first
            self.app.update_ui_state(model_type=model_type)
            
            # Create a list of tuples (label, value) for the dropdown choices
            # This ensures compatibility with Gradio Dropdown component expectations
            choices_tuples = [(str(version), str(version)) for version in model_versions]
            
            # Create a new dropdown with the updated choices
            if not choices_tuples:
                logger.warning(f"No model versions available for {model_type}, using empty list")
                # Return empty dropdown to avoid errors
                return gr.Dropdown(choices=[], value=None)
                    
            # Ensure default_version is in model_versions
            string_versions = [str(v) for v in model_versions]
            if default_version not in string_versions and string_versions:
                default_version = string_versions[0]
                logger.info(f"Default version not in choices, using first available: {default_version}")
            
            # Return the updated dropdown
            logger.info(f"Returning dropdown with {len(choices_tuples)} choices")
            return gr.Dropdown(choices=choices_tuples, value=default_version)
        except Exception as e:
            # Log any exceptions for debugging
            logger.error(f"Error in update_model_versions: {str(e)}")
            # Return empty dropdown to avoid errors
            return gr.Dropdown(choices=[], value=None)
        
    def handle_training_start(
        self, model_type, model_version, training_type, 
        lora_rank, lora_alpha, train_steps, batch_size, learning_rate, 
        save_iterations, repo_id,
        progress=gr.Progress(),
        resume_from_checkpoint=None,
    ):
        """Handle training start with proper log parser reset and checkpoint detection"""
        
        # Safely reset log parser if it exists
        if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
            self.app.log_parser.reset()
        else:
            logger.warning("Log parser not initialized, creating a new one")
            from ..utils import TrainingLogParser
            self.app.log_parser = TrainingLogParser()
        
        # Check for latest checkpoint
        checkpoints = list(self.app.output_path.glob("finetrainers_step_*"))
        has_checkpoints = len(checkpoints) > 0
        resume_from = resume_from_checkpoint  # Use the passed parameter
        
        if resume_from and checkpoints:
            # Find the latest checkpoint
            latest_checkpoint = max(checkpoints, key=os.path.getmtime)
            resume_from = str(latest_checkpoint)

            logger.info(f"Found checkpoint at {resume_from}, note from @julian: right now let's just resume training at 'latest'")
            result_from = "latest"
            
        # Convert model_type display name to internal name
        model_internal_type = MODEL_TYPES.get(model_type)
        
        if not model_internal_type:
            logger.error(f"Invalid model type: {model_type}")
            return f"Error: Invalid model type '{model_type}'", "Model type not recognized"
        
        # Convert training_type display name to internal name
        training_internal_type = TRAINING_TYPES.get(training_type)
        
        if not training_internal_type:
            logger.error(f"Invalid training type: {training_type}")
            return f"Error: Invalid training type '{training_type}'", "Training type not recognized"
        
        # Get other parameters from UI form
        num_gpus = int(self.components["num_gpus"].value)
        precomputation_items = int(self.components["precomputation_items"].value)
        lr_warmup_steps = int(self.components["lr_warmup_steps"].value)
        
        # Start training (it will automatically use the checkpoint if provided)
        try:
            return self.app.training.start_training(
                model_internal_type,
                lora_rank,
                lora_alpha,
                train_steps,
                batch_size,
                learning_rate,
                save_iterations,
                repo_id,
                training_type=training_internal_type,
                model_version=model_version,
                resume_from_checkpoint=resume_from,
                num_gpus=num_gpus,
                precomputation_items=precomputation_items,
                lr_warmup_steps=lr_warmup_steps,
                progress=progress
            )
        except Exception as e:
            logger.exception("Error starting training")
            return f"Error starting training: {str(e)}", f"Exception: {str(e)}\n\nCheck the logs for more details."

    def get_model_version_choices(self, model_type: str) -> List[str]:
        """Get model version choices based on model type"""
        # Convert UI display name to internal name
        internal_type = MODEL_TYPES.get(model_type)
        if not internal_type or internal_type not in MODEL_VERSIONS:
            logger.warning(f"No model versions found for {model_type} (internal type: {internal_type})")
            return []
            
        # Return just the model IDs as a list of simple strings
        version_ids = list(MODEL_VERSIONS.get(internal_type, {}).keys())
        logger.info(f"Found {len(version_ids)} versions for {model_type}: {version_ids}")
        
        # Ensure they're all strings
        return [str(version) for version in version_ids]

    def get_default_model_version(self, model_type: str) -> str:
        """Get default model version for the given model type"""
        # Convert UI display name to internal name
        internal_type = MODEL_TYPES.get(model_type)
        logger.debug(f"get_default_model_version({model_type}) = {internal_type}")
        
        if not internal_type or internal_type not in MODEL_VERSIONS:
            logger.warning(f"No valid model versions found for {model_type}")
            return ""
            
        # Get the first version available for this model type
        versions = list(MODEL_VERSIONS.get(internal_type, {}).keys())
        if versions:
            default_version = versions[0]
            logger.debug(f"Default version for {model_type}: {default_version}")
            return default_version
        return ""
   
    def update_model_info(self, model_type: str, training_type: str) -> Dict:
        """Update model info and related UI components based on model type and training type"""
        # Get model info text
        model_info = self.get_model_info(model_type, training_type)
        
        # Add general information about the selected training type
        if training_type == "Full Finetune":
            finetune_info = """
## 🧠 Full Finetune Mode
            
Full finetune mode trains all parameters of the model, requiring more VRAM but potentially enabling higher quality results.
            
- Requires 20-50GB+ VRAM depending on model
- Creates a complete standalone model (~8GB+ file size)
- Recommended only for high-end GPUs (A100, H100, etc.)
- Not recommended for the larger models like Hunyuan Video on consumer hardware
            """
            model_info = finetune_info + "\n\n" + model_info
        
        # Get default parameters for this model type and training type
        params = self.get_default_params(MODEL_TYPES.get(model_type), TRAINING_TYPES.get(training_type))
        
        # Check if LoRA params should be visible
        show_lora_params = training_type in ["LoRA Finetune", "Control LoRA"]
        
        # Check if Control-specific params should be visible
        show_control_params = training_type in ["Control LoRA", "Control Full Finetune"]
        
        # Return updates for UI components
        return {
            self.components["model_info"]: model_info,
            self.components["train_steps"]: params["train_steps"],
            self.components["batch_size"]: params["batch_size"],
            self.components["learning_rate"]: params["learning_rate"],
            self.components["save_iterations"]: params["save_iterations"],
            self.components["lora_rank"]: params["lora_rank"],
            self.components["lora_alpha"]: params["lora_alpha"],
            self.components["lora_params_row"]: gr.Row(visible=show_lora_params),
            self.components["lora_settings_row"]: gr.Row(visible=show_lora_params),
            self.components["control_params_row"]: gr.Row(visible=show_control_params),
            self.components["control_settings_row"]: gr.Row(visible=show_control_params),
            self.components["frame_conditioning_row"]: gr.Row(visible=show_control_params),
            self.components["control_options_row"]: gr.Row(visible=show_control_params)
        }

    def get_model_info(self, model_type: str, training_type: str) -> str:
        """Get information about the selected model type and training method"""
        if model_type == "HunyuanVideo":
            base_info = """## HunyuanVideo Training
- Required VRAM: ~48GB minimum
- Recommended batch size: 1-2
- Typical training time: 2-4 hours
- Default resolution: 49x512x768"""
            
            if training_type == "LoRA Finetune":
                return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)"
            elif training_type == "Control LoRA":
                return base_info + "\n- Required VRAM: ~20GB minimum\n- Default LoRA rank: 128 (~400 MB)\n- Supports image conditioning"
            elif training_type == "Control Full Finetune":
                return base_info + "\n- Required VRAM: ~50GB minimum\n- Supports image conditioning\n- **Not recommended due to VRAM requirements**"
            else:
                return base_info + "\n- Required VRAM: ~48GB minimum\n- **Full finetune not recommended due to VRAM requirements**"
                
        elif model_type == "LTX-Video":
            base_info = """## LTX-Video Training
- Recommended batch size: 1-4
- Typical training time: 1-3 hours
- Default resolution: 49x512x768"""
            
            if training_type == "LoRA Finetune":
                return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)"
            elif training_type == "Control LoRA":
                return base_info + "\n- Required VRAM: ~20GB minimum\n- Default LoRA rank: 128 (~400 MB)\n- Supports image conditioning"
            elif training_type == "Control Full Finetune":
                return base_info + "\n- Required VRAM: ~23GB minimum\n- Supports image conditioning"
            else:
                return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB"
                
        elif model_type == "Wan":
            base_info = """## Wan2.1 Training
- Recommended batch size: 1-4
- Typical training time: 1-3 hours
- Default resolution: 49x512x768"""
            
            if training_type == "LoRA Finetune":
                return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)"
            elif training_type == "Control LoRA":
                return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 32 (~120 MB)\n- Supports image conditioning"
            elif training_type == "Control Full Finetune":
                return base_info + "\n- Required VRAM: ~40GB minimum\n- Supports image conditioning\n- **Not recommended due to VRAM requirements**"
            else:
                return base_info + "\n- **Full finetune not recommended due to VRAM requirements**"
        
        # Default fallback
        return f"### {model_type}\nPlease check documentation for VRAM requirements and recommended settings."

    def get_default_params(self, model_type: str, training_type: str) -> Dict[str, Any]:
        """Get default training parameters for model type"""
        # Use model-specific defaults based on model_type and training_type
        model_defaults = {}
        
        if model_type == "hunyuan_video" and training_type in HUNYUAN_VIDEO_DEFAULTS:
            model_defaults = HUNYUAN_VIDEO_DEFAULTS[training_type]
        elif model_type == "ltx_video" and training_type in LTX_VIDEO_DEFAULTS:
            model_defaults = LTX_VIDEO_DEFAULTS[training_type]
        elif model_type == "wan" and training_type in WAN_DEFAULTS:
            model_defaults = WAN_DEFAULTS[training_type]
        
        # Build the complete params dict with defaults plus model-specific overrides
        params = {
            "train_steps": DEFAULT_NB_TRAINING_STEPS,
            "batch_size": DEFAULT_BATCH_SIZE,
            "learning_rate": DEFAULT_LEARNING_RATE,
            "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
            "lora_rank": DEFAULT_LORA_RANK_STR,
            "lora_alpha": DEFAULT_LORA_ALPHA_STR
        }
        
        # Override with model-specific values
        params.update(model_defaults)
        
        return params


    def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
        """Get latest status message, log content, and status code in a safer way"""
        state = self.app.training.get_status()
        logs = self.app.training.get_logs()

        # Check if training process died unexpectedly
        training_died = False
        
        if state["status"] == "training" and not self.app.training.is_training_running():
            state["status"] = "error"
            state["message"] = "Training process terminated unexpectedly."
            training_died = True
            
            # Look for error in logs
            error_lines = []
            for line in logs.splitlines():
                if "Error:" in line or "Exception:" in line or "Traceback" in line:
                    error_lines.append(line)
            
            if error_lines:
                state["message"] += f"\n\nPossible error: {error_lines[-1]}"

        # Ensure log parser is initialized
        if not hasattr(self.app, 'log_parser') or self.app.log_parser is None:
            from ..utils import TrainingLogParser
            self.app.log_parser = TrainingLogParser()
            logger.info("Initialized missing log parser")

        # Parse new log lines
        if logs and not training_died:
            last_state = None
            for line in logs.splitlines():
                try:
                    state_update = self.app.log_parser.parse_line(line)
                    if state_update:
                        last_state = state_update
                except Exception as e:
                    logger.error(f"Error parsing log line: {str(e)}")
                    continue
            
            if last_state:
                ui_updates = self.update_training_ui(last_state)
                state["message"] = ui_updates.get("status_box", state["message"])
        
        # Parse status for training state
        if "completed" in state["message"].lower():
            state["status"] = "completed"
        elif "error" in state["message"].lower():
            state["status"] = "error"
        elif "failed" in state["message"].lower():
            state["status"] = "error"
        elif "stopped" in state["message"].lower():
            state["status"] = "stopped"

        # Add the current task info if available
        if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
            state["current_task"] = self.app.log_parser.get_current_task_display()

        return (state["status"], state["message"], logs)

    def get_status_updates(self):
        """Get status updates for text components (no variant property)"""
        status, message, logs = self.get_latest_status_message_and_logs()
        
        # Get current task if available
        current_task = ""
        if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
            current_task = self.app.log_parser.get_current_task_display()
        
        return message, logs, current_task

    def get_button_updates(self):
        """Get button updates (with variant property)"""
        status, _, _ = self.get_latest_status_message_and_logs()
        
        # Add checkpoints detection
        checkpoints = list(self.app.output_path.glob("finetrainers_step_*"))
        has_checkpoints = len(checkpoints) > 0
        
        is_training = status in ["training", "initializing"]
        is_completed = status in ["completed", "error", "stopped"]
        
        # Create button updates
        start_btn = gr.Button(
            value="🚀 Start new training",
            interactive=not is_training,
            variant="primary" if not is_training else "secondary"
        )
        
        resume_btn = gr.Button(
            value="🛸 Start from latest checkpoint",
            interactive=has_checkpoints and not is_training,
            variant="primary" if not is_training else "secondary"
        )
        
        stop_btn = gr.Button(
            value="Stop at Last Checkpoint",
            interactive=is_training,
            variant="primary" if is_training else "secondary"
        )
        
        # Add delete_checkpoints_btn
        delete_checkpoints_btn = gr.Button(
            "Delete All Checkpoints",
            interactive=has_checkpoints and not is_training,
            variant="stop"
        )
        
        return start_btn, resume_btn, stop_btn, delete_checkpoints_btn
            
    def update_training_ui(self, training_state: Dict[str, Any]):
        """Update UI components based on training state"""
        updates = {}
        
        # Update status box with high-level information
        status_text = []
        if training_state["status"] != "idle":
            status_text.extend([
                f"Status: {training_state['status']}",
                f"Progress: {training_state['progress']}",
                f"Step: {training_state['current_step']}/{training_state['total_steps']}",
                f"Time elapsed: {training_state['elapsed']}",
                f"Estimated remaining: {training_state['remaining']}",
                "",
                f"Current loss: {training_state['step_loss']}",
                f"Learning rate: {training_state['learning_rate']}",
                f"Gradient norm: {training_state['grad_norm']}",
                f"Memory usage: {training_state['memory']}"
            ])
            
            if training_state["error_message"]:
                status_text.append(f"\nError: {training_state['error_message']}")
                
        updates["status_box"] = "\n".join(status_text)
        
        # Add current task information to the dedicated box
        if training_state.get("current_task"):
            updates["current_task_box"] = training_state["current_task"]
        else:
            updates["current_task_box"] = "No active task" if training_state["status"] != "training" else "Waiting for task information..."
        
        return updates
        
    def handle_pause_resume(self):
        """Handle pause/resume button click"""
        status, _, _ = self.get_latest_status_message_and_logs()
        
        if status == "paused":
            self.app.training.resume_training()
        else:
            self.app.training.pause_training()
            
        # Return the updates separately for text and buttons
        return (*self.get_status_updates(), *self.get_button_updates())

    def handle_stop(self):
        """Handle stop button click"""
        self.app.training.stop_training()
        
        # Return the updates separately for text and buttons
        return (*self.get_status_updates(), *self.get_button_updates())