VideoModelStudio / docs /finetrainers /examples_training_wan_image_conditioning__train.sh
jbilcke-hf's picture
jbilcke-hf HF Staff
add docs for image conditioning
56d5816
#!/bin/bash
set -e -x
# export TORCH_LOGS="+dynamo,recompiles,graph_breaks"
# export TORCHDYNAMO_VERBOSE=1
export WANDB_MODE="offline"
export NCCL_P2P_DISABLE=1
export NCCL_IB_DISABLE=1
export TORCH_NCCL_ENABLE_MONITORING=0
export FINETRAINERS_LOG_LEVEL="INFO"
# Download the validation dataset
if [ ! -d "examples/training/control/wan/image_condition/validation_dataset" ]; then
echo "Downloading validation dataset..."
huggingface-cli download --repo-type dataset finetrainers/OpenVid-1k-split-validation --local-dir examples/training/control/wan/image_condition/validation_dataset
else
echo "Validation dataset already exists. Skipping download."
fi
# Finetrainers supports multiple backends for distributed training. Select your favourite and benchmark the differences!
# BACKEND="accelerate"
BACKEND="ptd"
# In this setting, I'm using 1 GPU on 4-GPU node for training
NUM_GPUS=1
CUDA_VISIBLE_DEVICES="3"
# Check the JSON files for the expected JSON format
TRAINING_DATASET_CONFIG="examples/training/control/wan/image_condition/training.json"
VALIDATION_DATASET_FILE="examples/training/control/wan/image_condition/validation.json"
# Depending on how many GPUs you have available, choose your degree of parallelism and technique!
DDP_1="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 1 --cp_degree 1 --tp_degree 1"
DDP_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 2 --dp_shards 1 --cp_degree 1 --tp_degree 1"
DDP_4="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 4 --dp_shards 1 --cp_degree 1 --tp_degree 1"
DDP_8="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 8 --dp_shards 1 --cp_degree 1 --tp_degree 1"
FSDP_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 2 --cp_degree 1 --tp_degree 1"
FSDP_4="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 4 --cp_degree 1 --tp_degree 1"
HSDP_2_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 2 --dp_shards 2 --cp_degree 1 --tp_degree 1"
# Parallel arguments
parallel_cmd=(
$DDP_1
)
# Model arguments
model_cmd=(
--model_name "wan"
--pretrained_model_name_or_path "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
--compile_modules transformer
)
# Control arguments
control_cmd=(
--control_type none
--rank 128
--lora_alpha 128
--target_modules "blocks.*(to_q|to_k|to_v|to_out.0|ff.net.0.proj|ff.net.2)"
--frame_conditioning_type index
--frame_conditioning_index 0
)
# Dataset arguments
dataset_cmd=(
--dataset_config $TRAINING_DATASET_CONFIG
--dataset_shuffle_buffer_size 32
)
# Dataloader arguments
dataloader_cmd=(
--dataloader_num_workers 0
)
# Diffusion arguments
diffusion_cmd=(
--flow_weighting_scheme "logit_normal"
)
# Training arguments
# We target just the attention projections layers for LoRA training here.
# You can modify as you please and target any layer (regex is supported)
training_cmd=(
--training_type control-lora
--seed 42
--batch_size 1
--train_steps 10000
--gradient_accumulation_steps 1
--gradient_checkpointing
--checkpointing_steps 1000
--checkpointing_limit 2
# --resume_from_checkpoint 3000
--enable_slicing
--enable_tiling
)
# Optimizer arguments
optimizer_cmd=(
--optimizer "adamw"
--lr 2e-5
--lr_scheduler "constant_with_warmup"
--lr_warmup_steps 1000
--lr_num_cycles 1
--beta1 0.9
--beta2 0.99
--weight_decay 1e-4
--epsilon 1e-8
--max_grad_norm 1.0
)
# Validation arguments
validation_cmd=(
--validation_dataset_file "$VALIDATION_DATASET_FILE"
--validation_steps 501
)
# Miscellaneous arguments
miscellaneous_cmd=(
--tracker_name "finetrainers-wan-control"
--output_dir "/raid/aryan/wan-control-image-condition"
--init_timeout 600
--nccl_timeout 600
--report_to "wandb"
)
# Execute the training script
if [ "$BACKEND" == "accelerate" ]; then
ACCELERATE_CONFIG_FILE=""
if [ "$NUM_GPUS" == 1 ]; then
ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_1.yaml"
elif [ "$NUM_GPUS" == 2 ]; then
ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_2.yaml"
elif [ "$NUM_GPUS" == 4 ]; then
ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_4.yaml"
elif [ "$NUM_GPUS" == 8 ]; then
ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_8.yaml"
fi
accelerate launch --config_file "$ACCELERATE_CONFIG_FILE" --gpu_ids $CUDA_VISIBLE_DEVICES train.py \
"${parallel_cmd[@]}" \
"${model_cmd[@]}" \
"${control_cmd[@]}" \
"${dataset_cmd[@]}" \
"${dataloader_cmd[@]}" \
"${diffusion_cmd[@]}" \
"${training_cmd[@]}" \
"${optimizer_cmd[@]}" \
"${validation_cmd[@]}" \
"${miscellaneous_cmd[@]}"
elif [ "$BACKEND" == "ptd" ]; then
export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES
torchrun \
--standalone \
--nnodes=1 \
--nproc_per_node=$NUM_GPUS \
--rdzv_backend c10d \
--rdzv_endpoint="localhost:19242" \
train.py \
"${parallel_cmd[@]}" \
"${model_cmd[@]}" \
"${control_cmd[@]}" \
"${dataset_cmd[@]}" \
"${dataloader_cmd[@]}" \
"${diffusion_cmd[@]}" \
"${training_cmd[@]}" \
"${optimizer_cmd[@]}" \
"${validation_cmd[@]}" \
"${miscellaneous_cmd[@]}"
fi
echo -ne "-------------------- Finished executing script --------------------\n\n"