Spaces:
Running
Running
import os | |
import uuid | |
import json | |
import shutil | |
from dataclasses import dataclass, field | |
from typing import Dict, Any, Optional, List, Tuple | |
from pathlib import Path | |
import torch | |
import math | |
def parse_bool_env(env_value: Optional[str]) -> bool: | |
"""Parse environment variable string to boolean | |
Handles various true/false string representations: | |
- True: "true", "True", "TRUE", "1", etc | |
- False: "false", "False", "FALSE", "0", "", None | |
""" | |
if not env_value: | |
return False | |
return str(env_value).lower() in ('true', '1', 't', 'y', 'yes') | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN") | |
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE")) | |
# For large datasets that would be slow to display or download | |
USE_LARGE_DATASET = parse_bool_env(os.getenv("USE_LARGE_DATASET")) | |
# Base storage path | |
STORAGE_PATH = Path(os.environ.get('STORAGE_PATH', '.data')) | |
# ----------- Subdirectories for different data types ----------- | |
# The following paths correspond to temporary files, before they we "commit" (re-copy) them to the current project's training/ directory | |
VIDEOS_TO_SPLIT_PATH = STORAGE_PATH / "videos_to_split" # Raw uploaded/downloaded files | |
STAGING_PATH = STORAGE_PATH / "staging" # This is where files that are captioned or need captioning are waiting | |
# -------------------------------------------------------------- | |
# On the production server we can afford to preload the big model | |
PRELOAD_CAPTIONING_MODEL = parse_bool_env(os.environ.get('PRELOAD_CAPTIONING_MODEL')) | |
CAPTIONING_MODEL = "lmms-lab/LLaVA-Video-7B-Qwen2" | |
DEFAULT_PROMPT_PREFIX = "In the style of TOK, " | |
# This is only use to debug things in local | |
USE_MOCK_CAPTIONING_MODEL = parse_bool_env(os.environ.get('USE_MOCK_CAPTIONING_MODEL')) | |
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS = "Please write a full video description. Be synthetic and methodically list camera (close-up shot, medium-shot..), genre (music video, horror movie scene, video game footage, go pro footage, japanese anime, noir film, science-fiction, action movie, documentary..), characters (physical appearance, look, skin, facial features, haircut, clothing), scene (action, positions, movements), location (indoor, outdoor, place, building, country..), time and lighting (natural, golden hour, night time, LED lights, kelvin temperature etc), weather and climate (dusty, rainy, fog, haze, snowing..), era/settings." | |
def generate_model_project_id() -> str: | |
"""Generate a new UUID for a model project""" | |
return str(uuid.uuid4()) | |
def get_global_config_path() -> Path: | |
"""Get the path to the global config file""" | |
return STORAGE_PATH / "config.json" | |
def load_global_config() -> dict: | |
"""Load the global configuration file | |
Returns: | |
Dict containing global configuration | |
""" | |
config_path = get_global_config_path() | |
if not config_path.exists(): | |
# Create default config if it doesn't exist | |
default_config = { | |
"latest_model_project_id": None | |
} | |
save_global_config(default_config) | |
return default_config | |
try: | |
with open(config_path, 'r') as f: | |
return json.load(f) | |
except Exception as e: | |
logger.error(f"Error loading global config: {e}") | |
return {"latest_model_project_id": None} | |
def save_global_config(config: dict) -> bool: | |
"""Save the global configuration file | |
Args: | |
config: Dictionary containing configuration to save | |
Returns: | |
True if successful, False otherwise | |
""" | |
config_path = get_global_config_path() | |
try: | |
with open(config_path, 'w') as f: | |
json.dump(config, f, indent=2) | |
return True | |
except Exception as e: | |
logger.error(f"Error saving global config: {e}") | |
return False | |
def update_latest_project_id(project_id: str) -> bool: | |
"""Update the latest project ID in global config | |
Args: | |
project_id: The project ID to save | |
Returns: | |
True if successful, False otherwise | |
""" | |
config = load_global_config() | |
config["latest_model_project_id"] = project_id | |
return save_global_config(config) | |
def get_project_paths(project_id: str) -> Tuple[Path, Path, Path, Path]: | |
"""Get paths for a specific project | |
Args: | |
project_id: The model project UUID | |
Returns: | |
Tuple of (training_path, training_videos_path, output_path, log_file_path) | |
""" | |
project_base = STORAGE_PATH / "models" / project_id | |
training_path = project_base / "training" | |
training_videos_path = training_path / "videos" | |
output_path = project_base / "output" | |
log_file_path = output_path / "last_session.log" | |
# Ensure directories exist | |
training_path.mkdir(parents=True, exist_ok=True) | |
training_videos_path.mkdir(parents=True, exist_ok=True) | |
output_path.mkdir(parents=True, exist_ok=True) | |
return training_path, training_videos_path, output_path, log_file_path | |
def migrate_legacy_project() -> Optional[str]: | |
"""Migrate legacy project structure to new UUID-based structure | |
Returns: | |
New project UUID if migration was performed, None otherwise | |
""" | |
legacy_training = STORAGE_PATH / "training" | |
legacy_output = STORAGE_PATH / "output" | |
# Check if legacy folders exist and contain data | |
has_training_data = legacy_training.exists() and any(legacy_training.iterdir()) | |
has_output_data = legacy_output.exists() and any(legacy_output.iterdir()) | |
if not (has_training_data or has_output_data): | |
return None | |
# Generate new project ID and paths | |
project_id = generate_model_project_id() | |
training_path, training_videos_path, output_path, log_file_path = get_project_paths(project_id) | |
# Migrate data if it exists | |
if has_training_data: | |
# Copy files instead of moving to prevent data loss | |
for file in legacy_training.glob("*"): | |
if file.is_file(): | |
shutil.copy2(file, training_path) | |
# Copy videos subfolder if it exists | |
legacy_videos = legacy_training / "videos" | |
if legacy_videos.exists(): | |
for file in legacy_videos.glob("*"): | |
if file.is_file(): | |
shutil.copy2(file, training_videos_path) | |
if has_output_data: | |
for file in legacy_output.glob("*"): | |
if file.is_file(): | |
shutil.copy2(file, output_path) | |
elif file.is_dir(): | |
# For checkpoint directories | |
target_dir = output_path / file.name | |
target_dir.mkdir(exist_ok=True) | |
for subfile in file.glob("*"): | |
if subfile.is_file(): | |
shutil.copy2(subfile, target_dir) | |
return project_id | |
# Create directories | |
STORAGE_PATH.mkdir(parents=True, exist_ok=True) | |
VIDEOS_TO_SPLIT_PATH.mkdir(parents=True, exist_ok=True) | |
STAGING_PATH.mkdir(parents=True, exist_ok=True) | |
# Add at the end of the file, after the directory creation section | |
# This ensures models directory exists | |
MODELS_PATH = STORAGE_PATH / "models" | |
MODELS_PATH.mkdir(parents=True, exist_ok=True) | |
# To secure public instances | |
VMS_ADMIN_PASSWORD = os.environ.get('VMS_ADMIN_PASSWORD', '') | |
# Image normalization settings | |
NORMALIZE_IMAGES_TO = os.environ.get('NORMALIZE_IMAGES_TO', 'png').lower() | |
if NORMALIZE_IMAGES_TO not in ['png', 'jpg']: | |
raise ValueError("NORMALIZE_IMAGES_TO must be either 'png' or 'jpg'") | |
JPEG_QUALITY = int(os.environ.get('JPEG_QUALITY', '97')) | |
MODEL_TYPES = { | |
"HunyuanVideo": "hunyuan_video", | |
"LTX-Video": "ltx_video", | |
"Wan": "wan" | |
} | |
# Training types | |
TRAINING_TYPES = { | |
"LoRA Finetune": "lora", | |
"Full Finetune": "full-finetune", | |
"Control LoRA": "control-lora", | |
"Control Full Finetune": "control-full-finetune" | |
} | |
# Model versions for each model type | |
MODEL_VERSIONS = { | |
"wan": { | |
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers": { | |
"name": "Wan 2.1 T2V 1.3B (text-only, smaller)", | |
"type": "text-to-video", | |
"description": "Faster, smaller model (1.3B parameters)" | |
}, | |
"Wan-AI/Wan2.1-T2V-14B-Diffusers": { | |
"name": "Wan 2.1 T2V 14B (text-only, larger)", | |
"type": "text-to-video", | |
"description": "Higher quality but slower (14B parameters)" | |
}, | |
"Wan-AI/Wan2.1-I2V-14B-480P-Diffusers": { | |
"name": "Wan 2.1 I2V 480p (image+text)", | |
"type": "image-to-video", | |
"description": "Image conditioning at 480p resolution" | |
}, | |
"Wan-AI/Wan2.1-I2V-14B-720P-Diffusers": { | |
"name": "Wan 2.1 I2V 720p (image+text)", | |
"type": "image-to-video", | |
"description": "Image conditioning at 720p resolution" | |
}, | |
"Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers": { | |
"name": "Wan 2.1 FLF2V 720p (frame conditioning)", | |
"type": "frame-to-video", | |
"description": "Frame conditioning (first/last frame to video) at 720p resolution" | |
} | |
}, | |
"ltx_video": { | |
"Lightricks/LTX-Video": { | |
"name": "LTX Video (official)", | |
"type": "text-to-video", | |
"description": "Official LTX Video model" | |
} | |
}, | |
"hunyuan_video": { | |
"hunyuanvideo-community/HunyuanVideo": { | |
"name": "Hunyuan Video (official)", | |
"type": "text-to-video", | |
"description": "Official Hunyuan Video model" | |
} | |
} | |
} | |
DEFAULT_SEED = 42 | |
DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES = True | |
DEFAULT_DATASET_TYPE = "video" | |
DEFAULT_TRAINING_TYPE = "lora" | |
DEFAULT_RESHAPE_MODE = "bicubic" | |
DEFAULT_MIXED_PRECISION = "bf16" | |
DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS = 200 | |
DEFAULT_LORA_RANK = 128 | |
DEFAULT_LORA_RANK_STR = str(DEFAULT_LORA_RANK) | |
DEFAULT_LORA_ALPHA = 128 | |
DEFAULT_LORA_ALPHA_STR = str(DEFAULT_LORA_ALPHA) | |
DEFAULT_CAPTION_DROPOUT_P = 0.05 | |
DEFAULT_BATCH_SIZE = 1 | |
DEFAULT_LEARNING_RATE = 3e-5 | |
# GPU SETTINGS | |
DEFAULT_NUM_GPUS = 1 | |
DEFAULT_MAX_GPUS = min(8, torch.cuda.device_count() if torch.cuda.is_available() else 1) | |
DEFAULT_PRECOMPUTATION_ITEMS = 512 | |
DEFAULT_NB_TRAINING_STEPS = 1000 | |
# For this value, it is recommended to use about 20 to 40% of the number of training steps | |
DEFAULT_NB_LR_WARMUP_STEPS = math.ceil(0.20 * DEFAULT_NB_TRAINING_STEPS) # 20% of training steps | |
# Whether to automatically restart a training job after a server reboot or not | |
DEFAULT_AUTO_RESUME = False | |
# Control training defaults | |
DEFAULT_CONTROL_TYPE = "canny" | |
DEFAULT_TRAIN_QK_NORM = False | |
DEFAULT_FRAME_CONDITIONING_TYPE = "full" | |
DEFAULT_FRAME_CONDITIONING_INDEX = 0 | |
DEFAULT_FRAME_CONDITIONING_CONCATENATE_MASK = False | |
# For validation | |
DEFAULT_VALIDATION_NB_STEPS = 50 | |
DEFAULT_VALIDATION_HEIGHT = 512 | |
DEFAULT_VALIDATION_WIDTH = 768 | |
DEFAULT_VALIDATION_NB_FRAMES = 49 | |
DEFAULT_VALIDATION_FRAMERATE = 8 | |
# you should use resolutions that are powers of 8 | |
# using a 16:9 ratio is also super-recommended | |
# SD | |
SD_16_9_W = 1024 # 8*128 | |
SD_16_9_H = 576 # 8*72 | |
SD_9_16_W = 576 # 8*72 | |
SD_9_16_H = 1024 # 8*128 | |
# MD (720p) | |
MD_16_9_W = 1280 # 8*160 | |
MD_16_9_H = 720 # 8*90 | |
MD_9_16_W = 720 # 8*90 | |
MD_9_16_H = 1280 # 8*160 | |
# HD (1080p) | |
HD_16_9_W = 1920 # 8*240 | |
HD_16_9_H = 1080 # 8*135 | |
HD_9_16_W = 1080 # 8*135 | |
HD_9_16_H = 1920 # 8*240 | |
# QHD (2K) | |
QHD_16_9_W = 2160 # 8*270 | |
QHD_16_9_H = 1440 # 8*180 | |
QHD_9_16_W = 1440 # 8*180 | |
QHD_9_16_H = 2160 # 8*270 | |
# UHD (4K) | |
UHD_16_9_W = 3840 # 8*480 | |
UHD_16_9_H = 2160 # 8*270 | |
UHD_9_16_W = 2160 # 8*270 | |
UHD_9_16_H = 3840 # 8*480 | |
# it is important that the resolution buckets properly cover the training dataset, | |
# or else that we exclude from the dataset videos that are out of this range | |
# right now, finetrainers will crash if that happens, so the workaround is to have more buckets in here | |
NB_FRAMES_1 = 1 # 1 | |
NB_FRAMES_9 = 8 + 1 # 8 + 1 | |
NB_FRAMES_17 = 8 * 2 + 1 # 16 + 1 | |
NB_FRAMES_33 = 8 * 4 + 1 # 32 + 1 | |
NB_FRAMES_49 = 8 * 6 + 1 # 48 + 1 | |
NB_FRAMES_65 = 8 * 8 + 1 # 64 + 1 | |
NB_FRAMES_73 = 8 * 9 + 1 # 72 + 1 | |
NB_FRAMES_81 = 8 * 10 + 1 # 80 + 1 | |
NB_FRAMES_89 = 8 * 11 + 1 # 88 + 1 | |
NB_FRAMES_97 = 8 * 12 + 1 # 96 + 1 | |
NB_FRAMES_105 = 8 * 13 + 1 # 104 + 1 | |
NB_FRAMES_113 = 8 * 14 + 1 # 112 + 1 | |
NB_FRAMES_121 = 8 * 14 + 1 # 120 + 1 | |
NB_FRAMES_129 = 8 * 16 + 1 # 128 + 1 | |
NB_FRAMES_137 = 8 * 16 + 1 # 136 + 1 | |
NB_FRAMES_145 = 8 * 18 + 1 # 144 + 1 | |
NB_FRAMES_161 = 8 * 20 + 1 # 160 + 1 | |
NB_FRAMES_177 = 8 * 22 + 1 # 176 + 1 | |
NB_FRAMES_193 = 8 * 24 + 1 # 192 + 1 | |
NB_FRAMES_201 = 8 * 25 + 1 # 200 + 1 | |
NB_FRAMES_209 = 8 * 26 + 1 # 208 + 1 | |
NB_FRAMES_217 = 8 * 27 + 1 # 216 + 1 | |
NB_FRAMES_225 = 8 * 28 + 1 # 224 + 1 | |
NB_FRAMES_233 = 8 * 29 + 1 # 232 + 1 | |
NB_FRAMES_241 = 8 * 30 + 1 # 240 + 1 | |
NB_FRAMES_249 = 8 * 31 + 1 # 248 + 1 | |
NB_FRAMES_257 = 8 * 32 + 1 # 256 + 1 | |
NB_FRAMES_265 = 8 * 33 + 1 # 264 + 1 | |
NB_FRAMES_273 = 8 * 34 + 1 # 272 + 1 | |
NB_FRAMES_289 = 8 * 36 + 1 # 288 + 1 | |
NB_FRAMES_305 = 8 * 38 + 1 # 304 + 1 | |
NB_FRAMES_321 = 8 * 40 + 1 # 320 + 1 | |
NB_FRAMES_337 = 8 * 42 + 1 # 336 + 1 | |
NB_FRAMES_353 = 8 * 44 + 1 # 352 + 1 | |
NB_FRAMES_369 = 8 * 46 + 1 # 368 + 1 | |
NB_FRAMES_385 = 8 * 48 + 1 # 384 + 1 | |
NB_FRAMES_401 = 8 * 50 + 1 # 400 + 1 | |
# ------ HOW BUCKETS WORK:---------- | |
# Basically, to train or fine-tune a video model with Finetrainers, we need to specify all the possible accepted videos lengths AND size combinations (buckets), in the form: (BUCKET_CONFIGURATION_1, BUCKET_CONFIGURATION_2, ..., BUCKET_CONFIGURATION_N) | |
# Where a bucket is: (NUMBER_OF_FRAMES_PLUS_ONE, HEIGHT_IN_PIXELS, WIDTH_IN_PIXELS) | |
# For instance, for 2 seconds of a 1024x576 video at 24 frames per second, plus one frame (I think there is always an extra frame for the initial starting image), we would get: | |
# NUMBER_OF_FRAMES_PLUS_ONE = (2*24) + 1 = 48 + 1 = 49 | |
# HEIGHT_IN_PIXELS = 576 | |
# WIDTH_IN_PIXELS = 1024 | |
# -> This would give a bucket like this: (49, 576, 1024) | |
# | |
SD_TRAINING_BUCKETS = [ | |
(NB_FRAMES_1, SD_16_9_H, SD_16_9_W), # 1 | |
(NB_FRAMES_9, SD_16_9_H, SD_16_9_W), # 8 + 1 | |
(NB_FRAMES_17, SD_16_9_H, SD_16_9_W), # 16 + 1 | |
(NB_FRAMES_33, SD_16_9_H, SD_16_9_W), # 32 + 1 | |
(NB_FRAMES_49, SD_16_9_H, SD_16_9_W), # 48 + 1 | |
(NB_FRAMES_65, SD_16_9_H, SD_16_9_W), # 64 + 1 | |
(NB_FRAMES_73, SD_16_9_H, SD_16_9_W), # 72 + 1 | |
(NB_FRAMES_81, SD_16_9_H, SD_16_9_W), # 80 + 1 | |
(NB_FRAMES_89, SD_16_9_H, SD_16_9_W), # 88 + 1 | |
(NB_FRAMES_97, SD_16_9_H, SD_16_9_W), # 96 + 1 | |
(NB_FRAMES_105, SD_16_9_H, SD_16_9_W), # 104 + 1 | |
(NB_FRAMES_113, SD_16_9_H, SD_16_9_W), # 112 + 1 | |
(NB_FRAMES_121, SD_16_9_H, SD_16_9_W), # 121 + 1 | |
(NB_FRAMES_129, SD_16_9_H, SD_16_9_W), # 128 + 1 | |
(NB_FRAMES_137, SD_16_9_H, SD_16_9_W), # 136 + 1 | |
(NB_FRAMES_145, SD_16_9_H, SD_16_9_W), # 144 + 1 | |
(NB_FRAMES_161, SD_16_9_H, SD_16_9_W), # 160 + 1 | |
(NB_FRAMES_177, SD_16_9_H, SD_16_9_W), # 176 + 1 | |
(NB_FRAMES_193, SD_16_9_H, SD_16_9_W), # 192 + 1 | |
(NB_FRAMES_201, SD_16_9_H, SD_16_9_W), # 200 + 1 | |
(NB_FRAMES_209, SD_16_9_H, SD_16_9_W), # 208 + 1 | |
(NB_FRAMES_217, SD_16_9_H, SD_16_9_W), # 216 + 1 | |
(NB_FRAMES_225, SD_16_9_H, SD_16_9_W), # 224 + 1 | |
(NB_FRAMES_233, SD_16_9_H, SD_16_9_W), # 232 + 1 | |
(NB_FRAMES_241, SD_16_9_H, SD_16_9_W), # 240 + 1 | |
(NB_FRAMES_249, SD_16_9_H, SD_16_9_W), # 248 + 1 | |
(NB_FRAMES_257, SD_16_9_H, SD_16_9_W), # 256 + 1 | |
(NB_FRAMES_265, SD_16_9_H, SD_16_9_W), # 264 + 1 | |
(NB_FRAMES_273, SD_16_9_H, SD_16_9_W), # 272 + 1 | |
] | |
# For 1280x720 images and videos (from 1 frame up to 272) | |
MD_TRAINING_BUCKETS = [ | |
(NB_FRAMES_1, MD_16_9_H, MD_16_9_W), # 1 | |
(NB_FRAMES_9, MD_16_9_H, MD_16_9_W), # 8 + 1 | |
(NB_FRAMES_17, MD_16_9_H, MD_16_9_W), # 16 + 1 | |
(NB_FRAMES_33, MD_16_9_H, MD_16_9_W), # 32 + 1 | |
(NB_FRAMES_49, MD_16_9_H, MD_16_9_W), # 48 + 1 | |
(NB_FRAMES_65, MD_16_9_H, MD_16_9_W), # 64 + 1 | |
(NB_FRAMES_73, MD_16_9_H, MD_16_9_W), # 72 + 1 | |
(NB_FRAMES_81, MD_16_9_H, MD_16_9_W), # 80 + 1 | |
(NB_FRAMES_89, MD_16_9_H, MD_16_9_W), # 88 + 1 | |
(NB_FRAMES_97, MD_16_9_H, MD_16_9_W), # 96 + 1 | |
(NB_FRAMES_105, MD_16_9_H, MD_16_9_W), # 104 + 1 | |
(NB_FRAMES_113, MD_16_9_H, MD_16_9_W), # 112 + 1 | |
(NB_FRAMES_121, MD_16_9_H, MD_16_9_W), # 121 + 1 | |
(NB_FRAMES_129, MD_16_9_H, MD_16_9_W), # 128 + 1 | |
(NB_FRAMES_137, MD_16_9_H, MD_16_9_W), # 136 + 1 | |
(NB_FRAMES_145, MD_16_9_H, MD_16_9_W), # 144 + 1 | |
(NB_FRAMES_161, MD_16_9_H, MD_16_9_W), # 160 + 1 | |
(NB_FRAMES_177, MD_16_9_H, MD_16_9_W), # 176 + 1 | |
(NB_FRAMES_193, MD_16_9_H, MD_16_9_W), # 192 + 1 | |
(NB_FRAMES_201, MD_16_9_H, MD_16_9_W), # 200 + 1 | |
(NB_FRAMES_209, MD_16_9_H, MD_16_9_W), # 208 + 1 | |
(NB_FRAMES_217, MD_16_9_H, MD_16_9_W), # 216 + 1 | |
(NB_FRAMES_225, MD_16_9_H, MD_16_9_W), # 224 + 1 | |
(NB_FRAMES_233, MD_16_9_H, MD_16_9_W), # 232 + 1 | |
(NB_FRAMES_241, MD_16_9_H, MD_16_9_W), # 240 + 1 | |
(NB_FRAMES_249, MD_16_9_H, MD_16_9_W), # 248 + 1 | |
(NB_FRAMES_257, MD_16_9_H, MD_16_9_W), # 256 + 1 | |
(NB_FRAMES_265, MD_16_9_H, MD_16_9_W), # 264 + 1 | |
(NB_FRAMES_273, MD_16_9_H, MD_16_9_W), # 272 + 1 | |
] | |
# Model specific default parameters | |
# These are used instead of the previous TRAINING_PRESETS | |
# Resolution buckets for different models | |
RESOLUTION_OPTIONS = { | |
"SD (1024x576)": "SD_TRAINING_BUCKETS", | |
"HD (1280x720)": "MD_TRAINING_BUCKETS" | |
} | |
# Default parameters for Hunyuan Video | |
HUNYUAN_VIDEO_DEFAULTS = { | |
"lora": { | |
"learning_rate": 2e-5, | |
"flow_weighting_scheme": "none", | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR | |
}, | |
"control-lora": { | |
"learning_rate": 2e-5, | |
"flow_weighting_scheme": "none", | |
"lora_rank": "128", | |
"lora_alpha": "128", | |
"control_type": "custom", | |
"train_qk_norm": True, | |
"frame_conditioning_type": "index", | |
"frame_conditioning_index": 0, | |
"frame_conditioning_concatenate_mask": True | |
} | |
} | |
# Default parameters for LTX Video | |
LTX_VIDEO_DEFAULTS = { | |
"lora": { | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"flow_weighting_scheme": "none", | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR | |
}, | |
"full-finetune": { | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"flow_weighting_scheme": "logit_normal" | |
}, | |
"control-lora": { | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"flow_weighting_scheme": "logit_normal", | |
"lora_rank": "128", | |
"lora_alpha": "128", | |
"control_type": "custom", | |
"train_qk_norm": True, | |
"frame_conditioning_type": "index", | |
"frame_conditioning_index": 0, | |
"frame_conditioning_concatenate_mask": True | |
} | |
} | |
# Default parameters for Wan | |
WAN_DEFAULTS = { | |
"lora": { | |
"learning_rate": 5e-5, | |
"flow_weighting_scheme": "logit_normal", | |
"lora_rank": "32", | |
"lora_alpha": "32" | |
}, | |
"control-lora": { | |
"learning_rate": 5e-5, | |
"flow_weighting_scheme": "logit_normal", | |
"lora_rank": "32", | |
"lora_alpha": "32", | |
"control_type": "custom", | |
"train_qk_norm": True, | |
"frame_conditioning_type": "index", | |
"frame_conditioning_index": 0, | |
"frame_conditioning_concatenate_mask": True | |
} | |
} | |
class TrainingConfig: | |
"""Configuration class for finetrainers training""" | |
# Required arguments must come first | |
model_name: str | |
pretrained_model_name_or_path: str | |
data_root: str | |
output_dir: str | |
# Optional arguments follow | |
revision: Optional[str] = None | |
version: Optional[str] = None | |
cache_dir: Optional[str] = None | |
# Dataset arguments | |
# note: video_column and caption_column serve a dual purpose, | |
# when using the CSV mode they have to be CSV column names, | |
# otherwise they have to be filename (relative to the data_root dir path) | |
video_column: str = "videos.txt" | |
caption_column: str = "prompts.txt" | |
id_token: Optional[str] = None | |
video_resolution_buckets: List[Tuple[int, int, int]] = field(default_factory=lambda: SD_TRAINING_BUCKETS) | |
video_reshape_mode: str = "center" | |
caption_dropout_p: float = DEFAULT_CAPTION_DROPOUT_P | |
caption_dropout_technique: str = "empty" | |
precompute_conditions: bool = False | |
# Diffusion arguments | |
flow_resolution_shifting: bool = False | |
flow_weighting_scheme: str = "none" | |
flow_logit_mean: float = 0.0 | |
flow_logit_std: float = 1.0 | |
flow_mode_scale: float = 1.29 | |
# Training arguments | |
training_type: str = "lora" | |
seed: int = DEFAULT_SEED | |
mixed_precision: str = "bf16" | |
batch_size: int = 1 | |
train_steps: int = DEFAULT_NB_TRAINING_STEPS | |
lora_rank: int = DEFAULT_LORA_RANK | |
lora_alpha: int = DEFAULT_LORA_ALPHA | |
target_modules: List[str] = field(default_factory=lambda: ["to_q", "to_k", "to_v", "to_out.0"]) | |
gradient_accumulation_steps: int = 1 | |
gradient_checkpointing: bool = True | |
checkpointing_steps: int = DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS | |
checkpointing_limit: Optional[int] = 2 | |
resume_from_checkpoint: Optional[str] = None | |
enable_slicing: bool = True | |
enable_tiling: bool = True | |
# Optimizer arguments | |
optimizer: str = "adamw" | |
lr: float = DEFAULT_LEARNING_RATE | |
scale_lr: bool = False | |
lr_scheduler: str = "constant_with_warmup" | |
lr_warmup_steps: int = DEFAULT_NB_LR_WARMUP_STEPS | |
lr_num_cycles: int = 1 | |
lr_power: float = 1.0 | |
beta1: float = 0.9 | |
beta2: float = 0.95 | |
weight_decay: float = 1e-4 | |
epsilon: float = 1e-8 | |
max_grad_norm: float = 1.0 | |
# Miscellaneous arguments | |
tracker_name: str = "finetrainers" | |
report_to: str = "wandb" | |
nccl_timeout: int = 1800 | |
def hunyuan_video_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig': | |
"""Configuration for Hunyuan video-to-video LoRA training""" | |
return cls( | |
model_name="hunyuan_video", | |
pretrained_model_name_or_path="hunyuanvideo-community/HunyuanVideo", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_steps=DEFAULT_NB_TRAINING_STEPS, | |
lr=2e-5, | |
gradient_checkpointing=True, | |
id_token=None, | |
gradient_accumulation_steps=1, | |
lora_rank=DEFAULT_LORA_RANK, | |
lora_alpha=DEFAULT_LORA_ALPHA, | |
video_resolution_buckets=buckets or SD_TRAINING_BUCKETS, | |
caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P, | |
flow_weighting_scheme="none", # Hunyuan specific | |
training_type="lora" | |
) | |
def ltx_video_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig': | |
"""Configuration for LTX-Video LoRA training""" | |
return cls( | |
model_name="ltx_video", | |
pretrained_model_name_or_path="Lightricks/LTX-Video", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_steps=DEFAULT_NB_TRAINING_STEPS, | |
lr=DEFAULT_LEARNING_RATE, | |
gradient_checkpointing=True, | |
id_token=None, | |
gradient_accumulation_steps=4, | |
lora_rank=DEFAULT_LORA_RANK, | |
lora_alpha=DEFAULT_LORA_ALPHA, | |
video_resolution_buckets=buckets or SD_TRAINING_BUCKETS, | |
caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P, | |
flow_weighting_scheme="logit_normal", # LTX specific | |
training_type="lora" | |
) | |
def ltx_video_full_finetune(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig': | |
"""Configuration for LTX-Video full finetune training""" | |
return cls( | |
model_name="ltx_video", | |
pretrained_model_name_or_path="Lightricks/LTX-Video", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_steps=DEFAULT_NB_TRAINING_STEPS, | |
lr=1e-5, | |
gradient_checkpointing=True, | |
id_token=None, | |
gradient_accumulation_steps=1, | |
video_resolution_buckets=buckets or SD_TRAINING_BUCKETS, | |
caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P, | |
flow_weighting_scheme="logit_normal", # LTX specific | |
training_type="full-finetune" | |
) | |
def wan_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig': | |
"""Configuration for Wan T2V LoRA training""" | |
return cls( | |
model_name="wan", | |
pretrained_model_name_or_path="Wan-AI/Wan2.1-T2V-1.3B-Diffusers", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_steps=DEFAULT_NB_TRAINING_STEPS, | |
lr=5e-5, | |
gradient_checkpointing=True, | |
id_token=None, | |
gradient_accumulation_steps=1, | |
lora_rank=32, | |
lora_alpha=32, | |
target_modules=["blocks.*(to_q|to_k|to_v|to_out.0)"], # Wan-specific target modules | |
video_resolution_buckets=buckets or SD_TRAINING_BUCKETS, | |
caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P, | |
flow_weighting_scheme="logit_normal", # Wan specific | |
training_type="lora" | |
) | |
def to_args_list(self) -> List[str]: | |
"""Convert config to command line arguments list""" | |
args = [] | |
# Model arguments | |
# Add model_name (required argument) | |
args.extend(["--model_name", self.model_name]) | |
args.extend(["--pretrained_model_name_or_path", self.pretrained_model_name_or_path]) | |
if self.revision: | |
args.extend(["--revision", self.revision]) | |
if self.version: | |
args.extend(["--variant", self.version]) | |
if self.cache_dir: | |
args.extend(["--cache_dir", self.cache_dir]) | |
# Dataset arguments | |
args.extend(["--dataset_config", self.data_root]) | |
# Add ID token if specified | |
if self.id_token: | |
args.extend(["--id_token", self.id_token]) | |
# Add video resolution buckets | |
if self.video_resolution_buckets: | |
bucket_strs = [f"{f}x{h}x{w}" for f, h, w in self.video_resolution_buckets] | |
args.extend(["--video_resolution_buckets"] + bucket_strs) | |
args.extend(["--caption_dropout_p", str(self.caption_dropout_p)]) | |
args.extend(["--caption_dropout_technique", self.caption_dropout_technique]) | |
if self.precompute_conditions: | |
args.append("--precompute_conditions") | |
if hasattr(self, 'precomputation_items') and self.precomputation_items: | |
args.extend(["--precomputation_items", str(self.precomputation_items)]) | |
# Diffusion arguments | |
if self.flow_resolution_shifting: | |
args.append("--flow_resolution_shifting") | |
args.extend(["--flow_weighting_scheme", self.flow_weighting_scheme]) | |
args.extend(["--flow_logit_mean", str(self.flow_logit_mean)]) | |
args.extend(["--flow_logit_std", str(self.flow_logit_std)]) | |
args.extend(["--flow_mode_scale", str(self.flow_mode_scale)]) | |
# Training arguments | |
args.extend(["--training_type",self.training_type]) | |
args.extend(["--seed", str(self.seed)]) | |
# We don't use this, because mixed precision is handled by accelerate launch, not by the training script itself. | |
#args.extend(["--mixed_precision", self.mixed_precision]) | |
args.extend(["--batch_size", str(self.batch_size)]) | |
args.extend(["--train_steps", str(self.train_steps)]) | |
# LoRA specific arguments | |
if self.training_type == "lora": | |
args.extend(["--rank", str(self.lora_rank)]) | |
args.extend(["--lora_alpha", str(self.lora_alpha)]) | |
args.extend(["--target_modules"] + self.target_modules) | |
args.extend(["--gradient_accumulation_steps", str(self.gradient_accumulation_steps)]) | |
if self.gradient_checkpointing: | |
args.append("--gradient_checkpointing") | |
args.extend(["--checkpointing_steps", str(self.checkpointing_steps)]) | |
if self.checkpointing_limit: | |
args.extend(["--checkpointing_limit", str(self.checkpointing_limit)]) | |
if self.resume_from_checkpoint: | |
args.extend(["--resume_from_checkpoint", self.resume_from_checkpoint]) | |
if self.enable_slicing: | |
args.append("--enable_slicing") | |
if self.enable_tiling: | |
args.append("--enable_tiling") | |
# Optimizer arguments | |
args.extend(["--optimizer", self.optimizer]) | |
args.extend(["--lr", str(self.lr)]) | |
if self.scale_lr: | |
args.append("--scale_lr") | |
args.extend(["--lr_scheduler", self.lr_scheduler]) | |
args.extend(["--lr_warmup_steps", str(self.lr_warmup_steps)]) | |
args.extend(["--lr_num_cycles", str(self.lr_num_cycles)]) | |
args.extend(["--lr_power", str(self.lr_power)]) | |
args.extend(["--beta1", str(self.beta1)]) | |
args.extend(["--beta2", str(self.beta2)]) | |
args.extend(["--weight_decay", str(self.weight_decay)]) | |
args.extend(["--epsilon", str(self.epsilon)]) | |
args.extend(["--max_grad_norm", str(self.max_grad_norm)]) | |
# Miscellaneous arguments | |
args.extend(["--tracker_name", self.tracker_name]) | |
args.extend(["--output_dir", self.output_dir]) | |
args.extend(["--report_to", self.report_to]) | |
args.extend(["--nccl_timeout", str(self.nccl_timeout)]) | |
# normally this is disabled by default, but there was a bug in finetrainers | |
# so I had to fix it in trainer.py to make sure we check for push_to-hub | |
#args.append("--push_to_hub") | |
#args.extend(["--hub_token", str(False)]) | |
#args.extend(["--hub_model_id", str(False)]) | |
# If you are using LLM-captioned videos, it is common to see many unwanted starting phrases like | |
# "In this video, ...", "This video features ...", etc. | |
# To remove a simple subset of these phrases, you can specify | |
# --remove_common_llm_caption_prefixes when starting training. | |
args.append("--remove_common_llm_caption_prefixes") | |
return args | |