text-to-map / app.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Update app.py
8e5f6db verified
raw
history blame
17.2 kB
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh
class GPUSatelliteModelGenerator:
def __init__(self, building_height=0.05):
self.building_height = building_height
# Move color arrays to GPU using cupy
self.shadow_colors = cp.array([
[31, 42, 76],
[58, 64, 92],
[15, 27, 56],
[21, 22, 50],
[76, 81, 99]
])
self.road_colors = cp.array([
[187, 182, 175],
[138, 138, 138],
[142, 142, 129],
[202, 199, 189]
])
self.water_colors = cp.array([
[167, 225, 217],
[67, 101, 97],
[53, 83, 84],
[47, 94, 100],
[73, 131, 135]
])
# Output colors (BGR for OpenCV)
self.roof_colors = cp.array([
[191, 148, 124],
[190, 142, 121],
[184, 154, 139],
[178, 118, 118],
[164, 109, 107],
[155, 113, 105],
[153, 111, 106],
[155, 95, 96],
[135, 82, 87],
[117, 82, 78],
[113, 62, 50],
[166, 144, 135]
])
# Convert roof colors to HSV
self.roof_colors_hsv = cp.asarray(cv2.cvtColor(
self.roof_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
# Normalize roof HSV values
self.roof_colors_hsv[:, 0] = self.roof_colors_hsv[:, 0] * 2
self.roof_colors_hsv[:, 1:] = self.roof_colors_hsv[:, 1:] / 255
# Add roof tolerance (tighter than terrain to avoid confusion)
self.roof_tolerance = {
'hue': 8, # Tighter hue tolerance to differentiate from terrain
'sat': 0.15,
'val': 0.15
}
# Convert reference colors to HSV on GPU
self.shadow_colors_hsv = cp.asarray(cv2.cvtColor(
self.shadow_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.road_colors_hsv = cp.asarray(cv2.cvtColor(
self.road_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.water_colors_hsv = cp.asarray(cv2.cvtColor(
self.water_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
# Normalize HSV values on GPU
for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
colors_hsv[:, 0] = colors_hsv[:, 0] * 2
colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
# Color tolerances
self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
# Colors dictionary in [B, G, R]
self.colors = {
'black': cp.array([0, 0, 0]), # Shadows
'blue': cp.array([255, 0, 0]), # Water
'green': cp.array([0, 255, 0]), # Vegetation
'gray': cp.array([128, 128, 128]), # Roads
'brown': cp.array([0, 140, 255]), # Terrain
'white': cp.array([255, 255, 255]), # Buildings
'salmon': cp.array([128, 128, 255]) # Roofs
}
self.min_area_for_clustering = 1000
self.residential_height_factor = 0.6
self.isolation_threshold = 0.6
@staticmethod
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
"""HSV color distance calculation"""
pixel_h = pixel_hsv[0] * 2
pixel_s = pixel_hsv[1] / 255
pixel_v = pixel_hsv[2] / 255
# Calculate circular hue difference
hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
360 - cp.abs(pixel_h - reference_hsv[0]))
# Calculate saturation and value differences with weighted importance
sat_diff = cp.abs(pixel_s - reference_hsv[1])
val_diff = cp.abs(pixel_v - reference_hsv[2])
# Combined distance check with adjusted weights
return cp.logical_and(
cp.logical_and(
hue_diff <= tolerance['hue'],
sat_diff <= tolerance['sat']
),
val_diff <= tolerance['val']
)
def segment_image_gpu(self, img):
"""GPU-accelerated image segmentation with roof detection"""
# Transfer image to GPU
gpu_img = cp.asarray(img)
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
height, width = img.shape[:2]
output = cp.zeros_like(gpu_img)
# Create a sliding window view for neighborhood analysis
pad = 2
gpu_hsv_pad = cp.pad(gpu_hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge')
# Prepare flattened HSV data
hsv_pixels = gpu_hsv.reshape(-1, 3)
# Initialize masks including roofs
shadow_mask = cp.zeros((height * width,), dtype=bool)
road_mask = cp.zeros((height * width,), dtype=bool)
water_mask = cp.zeros((height * width,), dtype=bool)
roof_mask = cp.zeros((height * width,), dtype=bool)
# Color matching for predefined categories
for ref_hsv in self.shadow_colors_hsv:
temp_tolerance = {
'hue': self.shadow_tolerance['hue'] * 1.2,
'sat': self.shadow_tolerance['sat'] * 1.1,
'val': self.shadow_tolerance['val'] * 1.2
}
shadow_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
for ref_hsv in self.road_colors_hsv:
temp_tolerance = {
'hue': self.road_tolerance['hue'] * 1.3,
'sat': self.road_tolerance['sat'] * 1.2,
'val': self.road_tolerance['val']
}
road_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
for ref_hsv in self.water_colors_hsv:
water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
# Roof detection with specific color matching
for ref_hsv in self.roof_colors_hsv:
roof_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.roof_tolerance)
# Normalize HSV values
h, s, v = hsv_pixels.T
h = h * 2 # Convert to 0-360 range
s = s / 255
v = v / 255
# Enhanced vegetation detection
vegetation_mask = ((h >= 40) & (h <= 150) & (s >= 0.15))
# Refined terrain detection to avoid roof confusion
terrain_mask = (
((h >= 15) & (h <= 35) & (s >= 0.15) & (s <= 0.6)) | # Main terrain colors
((h >= 25) & (h <= 40) & (s >= 0.1) & (v >= 0.5)) # Lighter terrain
) & ~roof_mask # Explicitly exclude roof areas
# Apply brightness-based corrections for roads
gray_mask = (s <= 0.2) & (v >= 0.4) & (v <= 0.85)
road_mask |= gray_mask & ~(shadow_mask | water_mask | vegetation_mask | terrain_mask | roof_mask)
# Enhanced shadow detection
dark_mask = (v <= 0.3)
shadow_mask |= dark_mask & ~(water_mask | road_mask | roof_mask)
# Building mask (everything that's not another category)
building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask | terrain_mask | roof_mask)
# Apply masks to create output
output_flat = output.reshape(-1, 3)
output_flat[shadow_mask] = self.colors['black']
output_flat[water_mask] = self.colors['blue']
output_flat[road_mask] = self.colors['gray']
output_flat[vegetation_mask] = self.colors['green']
output_flat[terrain_mask] = self.colors['brown']
output_flat[roof_mask] = self.colors['salmon']
output_flat[building_mask] = self.colors['white']
segmented = output.reshape(height, width, 3)
# Enhanced cleanup with roof consideration
kernel = cp.ones((3, 3), dtype=bool)
kernel[1, 1] = False
# Two-pass cleanup
for _ in range(2):
for color_name, color_value in self.colors.items():
if cp.array_equal(color_value, self.colors['white']):
continue
color_mask = cp.all(segmented == color_value, axis=2)
dilated = binary_dilation(color_mask, structure=kernel)
building_pixels = cp.all(segmented == self.colors['white'], axis=2)
neighbor_count = binary_dilation(color_mask, structure=kernel).astype(int)
# Special handling for roofs - they should be more granular
if cp.array_equal(color_value, self.colors['salmon']):
surrounded = (neighbor_count >= 4) & building_pixels # Less aggressive for roofs
else:
surrounded = (neighbor_count >= 5) & building_pixels
segmented[surrounded] = color_value
return segmented
def estimate_heights_gpu(self, img, segmented):
"""GPU-accelerated height estimation with roof consideration"""
gpu_segmented = cp.asarray(segmented)
buildings_mask = cp.logical_or(
cp.all(gpu_segmented == self.colors['white'], axis=2),
cp.all(gpu_segmented == self.colors['salmon'], axis=2)
)
shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
# Connected components labeling on GPU
labeled_array, num_features = cp_label(buildings_mask)
# Calculate areas using GPU
areas = cp.bincount(labeled_array.ravel())[1:]
max_area = cp.max(areas) if len(areas) > 0 else 1
height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
# Process each building/roof
for label in range(1, num_features + 1):
building_mask = (labeled_array == label)
if not cp.any(building_mask):
continue
area = areas[label-1]
size_factor = 0.3 + 0.7 * (area / max_area)
# Check if this is a roof (salmon color)
is_roof = cp.any(cp.all(gpu_segmented[building_mask] == self.colors['salmon'], axis=1))
# Adjust height for roofs (typically smaller residential buildings)
if is_roof:
size_factor *= 0.8 # Slightly lower height for residential buildings
# Calculate shadow influence
dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
shadow_factor = 0.2 + 0.8 * shadow_ratio
final_height = size_factor * shadow_factor
height_map[building_mask] = final_height
return height_map.get() * 0.25
def generate_mesh_gpu(self, height_map, texture_img):
"""Generate 3D mesh using GPU-accelerated calculations"""
height_map_gpu = cp.asarray(height_map)
height, width = height_map.shape
# Generate vertex positions on GPU
x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
vertices = vertices.reshape(-1, 3)
# Normalize coordinates
scale = max(width, height)
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
vertices[:, 1] = vertices[:, 1] * 2 - 1
# Generate faces
i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
v0 = (i * width + j).flatten()
v1 = v0 + 1
v2 = ((i + 1) * width + j).flatten()
v3 = v2 + 1
faces = cp.vstack((
cp.column_stack((v0, v2, v1)),
cp.column_stack((v1, v2, v3))
))
# Generate UV coordinates
uvs = cp.zeros((vertices.shape[0], 2))
uvs[:, 0] = x.flatten() / (width - 1)
uvs[:, 1] = 1 - (z.flatten() / (height - 1))
# Convert to CPU for mesh creation
vertices_cpu = vertices.get()
faces_cpu = faces.get()
uvs_cpu = uvs.get()
# Create mesh
if len(texture_img.shape) == 3 and texture_img.shape[2] == 4:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
elif len(texture_img.shape) == 3:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
mesh = trimesh.Trimesh(
vertices=vertices_cpu,
faces=faces_cpu,
visual=trimesh.visual.TextureVisuals(
uv=uvs_cpu,
image=Image.fromarray(texture_img)
)
)
return mesh
def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
"""Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
try:
# Set dimensions and device
width = height = 1024
# Generate random seed
seed = np.random.randint(0, np.iinfo(np.int32).max)
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate satellite image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=f"satellite view in the style of TOK, {prompt}",
width=width,
height=height,
num_inference_steps=25,
generator=generator,
guidance_scale=7.5
).images[0]
# Convert PIL Image to OpenCV format
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
# Initialize GPU-accelerated generator
generator = GPUSatelliteModelGenerator(building_height=0.09)
# Process image using GPU
print("Segmenting image using GPU...")
segmented_img = generator.segment_image_gpu(cv_image)
print("Estimating heights using GPU...")
height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
# Generate mesh using GPU-accelerated calculations
print("Generating mesh using GPU...")
mesh = generator.generate_mesh_gpu(height_map, cv_image)
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
mesh.export(output_path)
# Save segmented image to a temporary file
segmented_path = os.path.join(temp_dir, 'segmented.png')
cv2.imwrite(segmented_path, segmented_img.get())
return output_path, segmented_path
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None, None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Map")
gr.Markdown("Generate a 3D map from text!")
with gr.Row():
prompt_input = gr.Text(
label="Enter your prompt",
placeholder="classic american town"
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
with gr.Column():
model_output = gr.Model3D(
label="Generated 3D Map",
clear_color=[0.0, 0.0, 0.0, 0.0],
)
with gr.Column():
segmented_output = gr.Image(
label="Segmented Map",
type="filepath"
)
# Event handler
generate_btn.click(
fn=generate_and_process_map,
inputs=[prompt_input],
outputs=[model_output, segmented_output],
api_name="generate"
)
if __name__ == "__main__":
# Initialize FLUX pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "jbilcke-hf/flux-satellite"
flux_pipe = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16
)
flux_pipe.load_lora_weights(adapter_id)
flux_pipe = flux_pipe.to(device)
# Launch Gradio app
demo.queue().launch()