tikslop / server /video_utils.py
jbilcke-hf's picture
jbilcke-hf HF Staff
wip
7dadc22
"""
Video generation utilities for HuggingFace endpoints and Gradio spaces.
"""
import asyncio
import time
import uuid
import logging
from typing import Dict
from aiohttp import ClientSession
from gradio_client import Client
from .models import UserRole, Endpoint
from .api_config import HF_TOKEN, GUIDANCE_SCALE
from .logging_utils import get_logger
logger = get_logger(__name__)
async def generate_video_content_with_inference_endpoints(
endpoint_manager, prompt: str, negative_prompt: str, width: int,
height: int, num_frames: int, num_inference_steps: int,
frame_rate: int, seed: int, options: dict, user_role: UserRole
) -> str:
"""
Internal method to generate video content with specific parameters.
Used by both regular video generation and thumbnail generation.
"""
is_thumbnail = options.get('thumbnail', False)
request_id = options.get('request_id', str(uuid.uuid4())[:8]) # Get or generate request ID
video_id = options.get('video_id', 'unknown')
# logger.info(f"[{request_id}] Generating {'thumbnail' if is_thumbnail else 'video'} for video {video_id} with seed {seed}")
json_payload = {
"inputs": {
"prompt": prompt,
},
"parameters": {
# ------------------- settings for LTX-Video -----------------------
"negative_prompt": negative_prompt,
"width": width,
"height": height,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"guidance_scale": options.get('guidance_scale', GUIDANCE_SCALE),
"seed": seed,
# ------------------- settings for Varnish -----------------------
"double_num_frames": False, # <- False for real-time generation
"fps": frame_rate,
"super_resolution": False, # <- False for real-time generation
"grain_amount": 0, # No film grain (on low-res, low-quality generation the effects aren't worth it + it adds weight to the MP4 payload)
}
}
# Add thumbnail flag to help with metrics and debugging
if is_thumbnail:
json_payload["metadata"] = {
"is_thumbnail": True,
"thumbnail_version": "1.0",
"request_id": request_id
}
# logger.info(f"[{request_id}] Waiting for an available endpoint...")
async with endpoint_manager.get_endpoint() as endpoint:
# logger.info(f"[{request_id}] Using endpoint {endpoint.id} for generation")
try:
async with ClientSession() as session:
#logger.info(f"[{request_id}] Sending request to endpoint {endpoint.id}: {endpoint.url}")
start_time = time.time()
# Proceed with actual request
async with session.post(
endpoint.url,
headers={
"Accept": "application/json",
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
"X-Request-ID": request_id # Add request ID to headers
},
json=json_payload,
timeout=12 # Extended timeout for thumbnails (was 8s)
) as response:
request_duration = time.time() - start_time
#logger.info(f"[{request_id}] Received response from endpoint {endpoint.id} in {request_duration:.2f}s: HTTP {response.status}")
if response.status != 200:
error_text = await response.text()
logger.error(f"[{request_id}] Failed response: {error_text}")
# Mark endpoint as in error state
await endpoint_manager.mark_endpoint_error(endpoint)
if "paused" in error_text:
logger.error(f"[{request_id}] Endpoint is paused")
return ""
raise Exception(f"Video generation failed: HTTP {response.status} - {error_text}")
result = await response.json()
#logger.info(f"[{request_id}] Successfully parsed JSON response")
if "error" in result:
error_msg = result['error']
logger.error(f"[{request_id}] Error in response: {error_msg}")
# Mark endpoint as in error state
await endpoint_manager.mark_endpoint_error(endpoint)
if "paused" in str(error_msg).lower():
logger.error(f"[{request_id}] Endpoint is paused")
return ""
raise Exception(f"Video generation failed: {error_msg}")
video_data_uri = result.get("video")
if not video_data_uri:
logger.error(f"[{request_id}] No video data in response")
# Mark endpoint as in error state
await endpoint_manager.mark_endpoint_error(endpoint)
raise Exception("No video data in response")
# Get data size
data_size = len(video_data_uri)
#logger.info(f"[{request_id}] Received video data: {data_size} chars")
# Reset error count on successful call
endpoint.error_count = 0
endpoint.error_until = 0
return video_data_uri
except asyncio.TimeoutError:
# Handle timeout specifically
logger.error(f"[{request_id}] Timeout occurred after {time.time() - start_time:.2f}s")
await endpoint_manager.mark_endpoint_error(endpoint, is_timeout=True)
return ""
except Exception as e:
# Handle all other exceptions
logger.error(f"[{request_id}] Exception during video generation: {str(e)}")
if not isinstance(e, asyncio.TimeoutError): # Already handled above
await endpoint_manager.mark_endpoint_error(endpoint)
return ""
async def generate_video_content_with_gradio(
endpoint_manager, prompt: str, negative_prompt: str, width: int,
height: int, num_frames: int, num_inference_steps: int,
frame_rate: int, seed: int, options: dict, user_role: UserRole
) -> str:
"""
Internal method to generate video content with specific parameters.
Used by both regular video generation and thumbnail generation.
This version uses our generic gradio space.
"""
is_thumbnail = options.get('thumbnail', False)
request_id = options.get('request_id', str(uuid.uuid4())[:8]) # Get or generate request ID
video_id = options.get('video_id', 'unknown')
# logger.info(f"[{request_id}] Generating {'thumbnail' if is_thumbnail else 'video'} for video {video_id} with seed {seed}")
# Define the synchronous function
def _sync_gradio_call():
client = Client("jbilcke-hf/fast-rendering-node", hf_token=HF_TOKEN)
return client.predict(
prompt=prompt,
seed=seed,
fps=8, # frame_rate, # attention, right now tilslop asks for 25 FPS
width=640, # width, # attention, right now tikslop asks for 1152
height=320, # height, # attention, righ tnow tikslop asks for 640
duration=3, # num_frames // frame_rate
)
# Run in a thread using asyncio.to_thread (Python 3.9+)
video_data_uri = await asyncio.to_thread(_sync_gradio_call)
return video_data_uri