File size: 13,063 Bytes
05be5a5
 
 
 
 
 
 
 
 
c13ce0c
a1f4a1e
bb49e0d
6412c24
 
05be5a5
 
 
 
c13ce0c
 
 
05be5a5
 
 
 
a1f4a1e
 
 
 
05be5a5
a1f4a1e
 
 
 
 
 
 
 
 
 
05be5a5
 
 
 
 
 
 
a1f4a1e
05be5a5
 
a1f4a1e
 
05be5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f4a1e
 
05be5a5
 
 
a1f4a1e
 
 
6412c24
ccc081e
 
3bc1feb
cf3d6df
3bc1feb
6412c24
a1f4a1e
 
 
 
 
6412c24
ccc081e
05be5a5
 
 
 
a1f4a1e
05be5a5
a1f4a1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6412c24
 
 
 
 
 
 
a1f4a1e
05be5a5
6412c24
 
 
 
 
 
 
 
 
 
 
 
 
05be5a5
a1f4a1e
 
6412c24
05be5a5
 
a1f4a1e
05be5a5
 
a1f4a1e
 
 
 
 
 
 
 
 
05be5a5
a1f4a1e
 
 
 
 
 
 
 
 
 
05be5a5
 
 
6412c24
05be5a5
a1f4a1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05be5a5
 
 
 
 
 
bb49e0d
05be5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f4a1e
bb49e0d
05be5a5
6412c24
05be5a5
 
 
 
ccc081e
a1f4a1e
ccc081e
 
 
 
 
 
a1f4a1e
ccc081e
6412c24
ccc081e
 
 
 
05be5a5
 
 
 
a1f4a1e
05be5a5
 
 
a1f4a1e
05be5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
from fastapi import APIRouter, HTTPException, UploadFile, File
from fastapi.responses import FileResponse
from pydantic import BaseModel, field_validator
from typing import List
from PIL import Image
import os
import base64
from io import BytesIO
import shutil
from .config import Config
from typing import List, Optional, Union, Dict, Any
from . import utils
import copy
import traceback

app = APIRouter()

# === Configuration ===
IMAGE_ROOT = os.path.join(Config.current_path, "dataset/images")
LABEL_ROOT = os.path.join(Config.current_path, "dataset/labels")
IMAGE_LABEL_ROOT = os.path.join(Config.current_path, "image_labels")

CLASS_ID = 0

# === Pydantic Models ===
class Point(BaseModel):
    x: float
    y: float

class Box(BaseModel):
    type: str = "bbox"  # "bbox" or "segmentation"
    # For bbox
    left: Optional[int] = None
    top: Optional[int] = None
    width: Optional[int] = None
    height: Optional[int] = None
    # For segmentation
    points: Optional[List[Point]] = None
    # Common fields
    classId: int = CLASS_ID
    stroke: str = "#00ff00"
    strokeWidth: int = 3
    fill: str = "rgba(0, 255, 0, 0.2)"
    saved: bool = True

    @field_validator("left", "top", "width", "height", mode="before")
    def round_floats(cls, v):
        return round(v) if v is not None else None

class SaveAnnotationsRequest(BaseModel):
    annotations: List[Box]  # Changed from 'boxes' to 'annotations'
    image_name: str
    original_width: int
    original_height: int

class ImageInfo(BaseModel):
    name: str  # Relative path like train/image1.jpg
    width: int
    height: int
    has_annotations: bool

# === Helpers ===
def get_image_path(image_name: str) -> str:
    return os.path.join(IMAGE_ROOT, image_name)

def get_label_path(image_name: str) -> str:
    return os.path.join(LABEL_ROOT, os.path.splitext(image_name)[0] + ".txt")

# === Core Functions ===
def load_yolo_annotations(image_path: str, label_path: str, detect: bool = False):
    """Load both bbox and segmentation annotations from YOLO format"""
    try:
        img = Image.open(image_path)
        w, h = img.size
        annotations = []

        # Auto-detect if needed
        normalise = False
        if detect and not os.path.exists(label_path):
            from .yolo_manager import YOLOManager
            with YOLOManager() as yolo_manager:
                weights_path = Config.yolo_trained_model_path
                yolo_manager.load_model(weights_path)
                yolo_manager.annotate_images(
                    image_paths=[image_path],
                    output_dir=IMAGE_LABEL_ROOT,
                    save_image=False,
                    label_path=label_path
                )
                normalise = True

        if os.path.exists(label_path):
            with open(label_path, "r") as f:
                for line in f:
                    parts = list(map(float, line.strip().split()))
                    if len(parts) < 5:
                        continue

                    class_id = int(parts[0])

                    if len(parts) == 5:  # Bounding box format
                        _, xc, yc, bw, bh = parts
                        left = int((xc - bw / 2) * w)
                        top = int((yc - bh / 2) * h)
                        width = int(bw * w)
                        height = int(bh * h)

                        annotations.append({
                            "type": "bbox",
                            "left": left,
                            "top": top,
                            "width": width,
                            "height": height,
                            "classId": class_id,
                            "stroke": "#00ff00",
                            "strokeWidth": 3,
                            "fill": "rgba(0, 255, 0, 0.2)",
                            "saved": True
                        })

                    elif len(parts) > 5 and len(parts) % 2 == 1:  # Segmentation format
                        # Skip class_id, then pairs of x,y coordinates
                        coords = parts[1:]
                        if len(coords) >= 6:  # At least 3 points
                            points = []
                            for i in range(0, len(coords), 2):
                                if i + 1 < len(coords):
                                    x = coords[i] * w
                                    y = coords[i + 1] * h
                                    points.append({"x": x, "y": y})

                            annotations.append({
                                "type": "segmentation",
                                "points": points,
                                "classId": class_id,
                                "stroke": "#00ff00",
                                "strokeWidth": 3,
                                "fill": "rgba(0, 255, 0, 0.2)",
                                "saved": True
                            })
            if normalise:
                annotations = utils.normalize_segmentation(annotations)
                save_yolo_annotations(
                    copy.deepcopy(annotations),
                    (w, h),
                    label_path
                )
        return annotations, (w, h)
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error loading annotations: {str(e)} {traceback.format_exc()}")

def normalize_annotations(annotations: List[Union[Box, dict]]) -> List[Box]:
    """Convert all annotations to Box objects."""
    normalized = []
    for ann in annotations:
        if isinstance(ann, Box):
            normalized.append(ann)
        elif isinstance(ann, dict):
            normalized.append(Box(**ann))
        else:
            raise TypeError(f"Unsupported annotation type: {type(ann)}")
    return normalized

def save_yolo_annotations(annotations: List[Box], original_size: tuple, label_path: str):
    """Save annotations in YOLO format (both bbox and segmentation)"""
    annotations = normalize_annotations(annotations)
    os.makedirs(os.path.dirname(label_path), exist_ok=True)
    w, h = original_size

    try:
        with open(label_path, "w") as f:
            # Generate YOLO format from annotations
            for annotation in annotations:
                if annotation.type == "bbox":
                    left, top, width, height = annotation.left, annotation.top, annotation.width, annotation.height
                    xc = (left + width / 2) / w
                    yc = (top + height / 2) / h
                    bw = width / w
                    bh = height / h
                    f.write(f"{annotation.classId} {xc:.6f} {yc:.6f} {bw:.6f} {bh:.6f}\n")

                elif annotation.type == "segmentation" and annotation.points:
                    # Convert points to normalized coordinates
                    normalized_points = []
                    for point in annotation.points:
                        normalized_points.extend([point.x / w, point.y / h])

                    coords_str = " ".join(f"{coord:.6f}" for coord in normalized_points)
                    f.write(f"{annotation.classId} {coords_str}\n")

        # Copy to image_labels directory
        shutil.copy2(label_path, f"{IMAGE_LABEL_ROOT}/{os.path.basename(label_path)}")
        return True
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error saving annotations: {str(e)} {traceback.format_exc()}")

def parse_yolo_line(line: str, image_width: int, image_height: int) -> Dict[str, Any]:
    """Parse a single YOLO format line and return annotation dict"""
    parts = list(map(float, line.strip().split()))
    if len(parts) < 5:
        return None

    class_id = int(parts[0])

    if len(parts) == 5:  # Bounding box
        _, xc, yc, bw, bh = parts
        left = int((xc - bw / 2) * image_width)
        top = int((yc - bh / 2) * image_height)
        width = int(bw * image_width)
        height = int(bh * image_height)

        return {
            "type": "bbox",
            "left": left,
            "top": top,
            "width": width,
            "height": height,
            "classId": class_id,
            "stroke": "#00ff00",
            "strokeWidth": 3,
            "fill": "rgba(0, 255, 0, 0.2)",
            "saved": True
        }

    elif len(parts) > 5 and len(parts) % 2 == 1:  # Segmentation
        coords = parts[1:]
        if len(coords) >= 6:  # At least 3 points
            points = []
            for i in range(0, len(coords), 2):
                if i + 1 < len(coords):
                    x = coords[i] * image_width
                    y = coords[i + 1] * image_height
                    points.append({"x": x, "y": y})

            return {
                "type": "segmentation",
                "points": points,
                "classId": class_id,
                "stroke": "#00ff00",
                "strokeWidth": 3,
                "fill": "rgba(0, 255, 0, 0.2)",
                "saved": True
            }

    return None

# === API Routes ===

@app.get("/api/annotate/images", response_model=List[ImageInfo])
async def list_all_images():
    image_info_list = []
    for root, _, files in os.walk(IMAGE_ROOT):
        for file in sorted(files):
            if file.lower().endswith((".jpg", ".jpeg", ".png")):
                image_path = os.path.join(root, file)
                rel_path = os.path.relpath(image_path, IMAGE_ROOT)
                label_path = get_label_path(rel_path)

                img = Image.open(image_path)
                width, height = img.size

                image_info_list.append(ImageInfo(
                    name=rel_path.replace("\\", "/"),
                    width=width,
                    height=height,
                    has_annotations=os.path.exists(label_path)
                ))
    return image_info_list

@app.get("/api/annotate/image/{image_name:path}")
async def get_image(image_name: str):
    image_path = get_image_path(image_name)
    if not os.path.exists(image_path):
        raise HTTPException(status_code=404, detail="Image not found")

    with Image.open(image_path) as img:
        if img.mode != "RGB":
            img = img.convert("RGB")
        buffer = BytesIO()
        img.save(buffer, format="JPEG")
        img_data = base64.b64encode(buffer.getvalue()).decode()
        return {
            "image_data": f"data:image/jpeg;base64,{img_data}",
            "width": img.width,
            "height": img.height
        }

@app.get("/api/annotate/annotations/{image_name:path}")
async def get_annotations(image_name: str):
    image_path = get_image_path(image_name)
    label_path = get_label_path(image_name)

    if not os.path.exists(image_path):
        raise HTTPException(status_code=404, detail="Image not found")

    annotations, (width, height) = load_yolo_annotations(image_path, label_path)

    return {
        "annotations": annotations,
        "original_width": width,
        "original_height": height
    }

@app.get("/api/annotate/detect_annotations/{image_name:path}")
async def get_detected_annotations(image_name: str):
    image_path = get_image_path(image_name)
    label_path = get_label_path(image_name)

    if not os.path.exists(image_path):
        raise HTTPException(status_code=404, detail="Image not found")

    annotations, (width, height) = load_yolo_annotations(image_path, label_path, True)
    return {
        "annotations": annotations,
        "original_width": width,
        "original_height": height
    }

@app.post("/api/annotate/annotations")
async def save_annotations(request: SaveAnnotationsRequest):
    label_path = get_label_path(request.image_name)
    success = save_yolo_annotations(
        request.annotations,
        (request.original_width, request.original_height),
        label_path
    )
    return {"message": f"Saved {len(request.annotations)} annotations successfully"}

@app.delete("/api/annotate/annotations/{image_name:path}")
async def delete_annotations(image_name: str):
    label_path = get_label_path(image_name)
    if os.path.exists(label_path):
        os.remove(label_path)
        return {"message": "Annotations deleted"}
    return {"message": "No annotations to delete"}

@app.get("/api/annotate/annotations/{image_name:path}/download")
async def download_annotations(image_name: str):
    label_path = get_label_path(image_name)
    if not os.path.exists(label_path):
        raise HTTPException(status_code=404, detail="Annotations not found")
    return FileResponse(
        label_path,
        media_type="text/plain",
        filename=os.path.basename(label_path)
    )

@app.post("/api/annotate/upload")
async def upload_image(file: UploadFile = File(...)):
    if not file.content_type.startswith("image/"):
        raise HTTPException(status_code=400, detail="File must be an image")

    file_path = os.path.join(IMAGE_ROOT, "train", file.filename)
    with open(file_path, "wb") as f:
        f.write(await file.read())
    return {"message": f"Uploaded {file.filename} to train set"}