Spaces:
Build error
Build error
File size: 13,063 Bytes
05be5a5 c13ce0c a1f4a1e bb49e0d 6412c24 05be5a5 c13ce0c 05be5a5 a1f4a1e 05be5a5 a1f4a1e 05be5a5 a1f4a1e 05be5a5 a1f4a1e 05be5a5 a1f4a1e 05be5a5 a1f4a1e 6412c24 ccc081e 3bc1feb cf3d6df 3bc1feb 6412c24 a1f4a1e 6412c24 ccc081e 05be5a5 a1f4a1e 05be5a5 a1f4a1e 6412c24 a1f4a1e 05be5a5 6412c24 05be5a5 a1f4a1e 6412c24 05be5a5 a1f4a1e 05be5a5 a1f4a1e 05be5a5 a1f4a1e 05be5a5 6412c24 05be5a5 a1f4a1e 05be5a5 bb49e0d 05be5a5 a1f4a1e bb49e0d 05be5a5 6412c24 05be5a5 ccc081e a1f4a1e ccc081e a1f4a1e ccc081e 6412c24 ccc081e 05be5a5 a1f4a1e 05be5a5 a1f4a1e 05be5a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
from fastapi import APIRouter, HTTPException, UploadFile, File
from fastapi.responses import FileResponse
from pydantic import BaseModel, field_validator
from typing import List
from PIL import Image
import os
import base64
from io import BytesIO
import shutil
from .config import Config
from typing import List, Optional, Union, Dict, Any
from . import utils
import copy
import traceback
app = APIRouter()
# === Configuration ===
IMAGE_ROOT = os.path.join(Config.current_path, "dataset/images")
LABEL_ROOT = os.path.join(Config.current_path, "dataset/labels")
IMAGE_LABEL_ROOT = os.path.join(Config.current_path, "image_labels")
CLASS_ID = 0
# === Pydantic Models ===
class Point(BaseModel):
x: float
y: float
class Box(BaseModel):
type: str = "bbox" # "bbox" or "segmentation"
# For bbox
left: Optional[int] = None
top: Optional[int] = None
width: Optional[int] = None
height: Optional[int] = None
# For segmentation
points: Optional[List[Point]] = None
# Common fields
classId: int = CLASS_ID
stroke: str = "#00ff00"
strokeWidth: int = 3
fill: str = "rgba(0, 255, 0, 0.2)"
saved: bool = True
@field_validator("left", "top", "width", "height", mode="before")
def round_floats(cls, v):
return round(v) if v is not None else None
class SaveAnnotationsRequest(BaseModel):
annotations: List[Box] # Changed from 'boxes' to 'annotations'
image_name: str
original_width: int
original_height: int
class ImageInfo(BaseModel):
name: str # Relative path like train/image1.jpg
width: int
height: int
has_annotations: bool
# === Helpers ===
def get_image_path(image_name: str) -> str:
return os.path.join(IMAGE_ROOT, image_name)
def get_label_path(image_name: str) -> str:
return os.path.join(LABEL_ROOT, os.path.splitext(image_name)[0] + ".txt")
# === Core Functions ===
def load_yolo_annotations(image_path: str, label_path: str, detect: bool = False):
"""Load both bbox and segmentation annotations from YOLO format"""
try:
img = Image.open(image_path)
w, h = img.size
annotations = []
# Auto-detect if needed
normalise = False
if detect and not os.path.exists(label_path):
from .yolo_manager import YOLOManager
with YOLOManager() as yolo_manager:
weights_path = Config.yolo_trained_model_path
yolo_manager.load_model(weights_path)
yolo_manager.annotate_images(
image_paths=[image_path],
output_dir=IMAGE_LABEL_ROOT,
save_image=False,
label_path=label_path
)
normalise = True
if os.path.exists(label_path):
with open(label_path, "r") as f:
for line in f:
parts = list(map(float, line.strip().split()))
if len(parts) < 5:
continue
class_id = int(parts[0])
if len(parts) == 5: # Bounding box format
_, xc, yc, bw, bh = parts
left = int((xc - bw / 2) * w)
top = int((yc - bh / 2) * h)
width = int(bw * w)
height = int(bh * h)
annotations.append({
"type": "bbox",
"left": left,
"top": top,
"width": width,
"height": height,
"classId": class_id,
"stroke": "#00ff00",
"strokeWidth": 3,
"fill": "rgba(0, 255, 0, 0.2)",
"saved": True
})
elif len(parts) > 5 and len(parts) % 2 == 1: # Segmentation format
# Skip class_id, then pairs of x,y coordinates
coords = parts[1:]
if len(coords) >= 6: # At least 3 points
points = []
for i in range(0, len(coords), 2):
if i + 1 < len(coords):
x = coords[i] * w
y = coords[i + 1] * h
points.append({"x": x, "y": y})
annotations.append({
"type": "segmentation",
"points": points,
"classId": class_id,
"stroke": "#00ff00",
"strokeWidth": 3,
"fill": "rgba(0, 255, 0, 0.2)",
"saved": True
})
if normalise:
annotations = utils.normalize_segmentation(annotations)
save_yolo_annotations(
copy.deepcopy(annotations),
(w, h),
label_path
)
return annotations, (w, h)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading annotations: {str(e)} {traceback.format_exc()}")
def normalize_annotations(annotations: List[Union[Box, dict]]) -> List[Box]:
"""Convert all annotations to Box objects."""
normalized = []
for ann in annotations:
if isinstance(ann, Box):
normalized.append(ann)
elif isinstance(ann, dict):
normalized.append(Box(**ann))
else:
raise TypeError(f"Unsupported annotation type: {type(ann)}")
return normalized
def save_yolo_annotations(annotations: List[Box], original_size: tuple, label_path: str):
"""Save annotations in YOLO format (both bbox and segmentation)"""
annotations = normalize_annotations(annotations)
os.makedirs(os.path.dirname(label_path), exist_ok=True)
w, h = original_size
try:
with open(label_path, "w") as f:
# Generate YOLO format from annotations
for annotation in annotations:
if annotation.type == "bbox":
left, top, width, height = annotation.left, annotation.top, annotation.width, annotation.height
xc = (left + width / 2) / w
yc = (top + height / 2) / h
bw = width / w
bh = height / h
f.write(f"{annotation.classId} {xc:.6f} {yc:.6f} {bw:.6f} {bh:.6f}\n")
elif annotation.type == "segmentation" and annotation.points:
# Convert points to normalized coordinates
normalized_points = []
for point in annotation.points:
normalized_points.extend([point.x / w, point.y / h])
coords_str = " ".join(f"{coord:.6f}" for coord in normalized_points)
f.write(f"{annotation.classId} {coords_str}\n")
# Copy to image_labels directory
shutil.copy2(label_path, f"{IMAGE_LABEL_ROOT}/{os.path.basename(label_path)}")
return True
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error saving annotations: {str(e)} {traceback.format_exc()}")
def parse_yolo_line(line: str, image_width: int, image_height: int) -> Dict[str, Any]:
"""Parse a single YOLO format line and return annotation dict"""
parts = list(map(float, line.strip().split()))
if len(parts) < 5:
return None
class_id = int(parts[0])
if len(parts) == 5: # Bounding box
_, xc, yc, bw, bh = parts
left = int((xc - bw / 2) * image_width)
top = int((yc - bh / 2) * image_height)
width = int(bw * image_width)
height = int(bh * image_height)
return {
"type": "bbox",
"left": left,
"top": top,
"width": width,
"height": height,
"classId": class_id,
"stroke": "#00ff00",
"strokeWidth": 3,
"fill": "rgba(0, 255, 0, 0.2)",
"saved": True
}
elif len(parts) > 5 and len(parts) % 2 == 1: # Segmentation
coords = parts[1:]
if len(coords) >= 6: # At least 3 points
points = []
for i in range(0, len(coords), 2):
if i + 1 < len(coords):
x = coords[i] * image_width
y = coords[i + 1] * image_height
points.append({"x": x, "y": y})
return {
"type": "segmentation",
"points": points,
"classId": class_id,
"stroke": "#00ff00",
"strokeWidth": 3,
"fill": "rgba(0, 255, 0, 0.2)",
"saved": True
}
return None
# === API Routes ===
@app.get("/api/annotate/images", response_model=List[ImageInfo])
async def list_all_images():
image_info_list = []
for root, _, files in os.walk(IMAGE_ROOT):
for file in sorted(files):
if file.lower().endswith((".jpg", ".jpeg", ".png")):
image_path = os.path.join(root, file)
rel_path = os.path.relpath(image_path, IMAGE_ROOT)
label_path = get_label_path(rel_path)
img = Image.open(image_path)
width, height = img.size
image_info_list.append(ImageInfo(
name=rel_path.replace("\\", "/"),
width=width,
height=height,
has_annotations=os.path.exists(label_path)
))
return image_info_list
@app.get("/api/annotate/image/{image_name:path}")
async def get_image(image_name: str):
image_path = get_image_path(image_name)
if not os.path.exists(image_path):
raise HTTPException(status_code=404, detail="Image not found")
with Image.open(image_path) as img:
if img.mode != "RGB":
img = img.convert("RGB")
buffer = BytesIO()
img.save(buffer, format="JPEG")
img_data = base64.b64encode(buffer.getvalue()).decode()
return {
"image_data": f"data:image/jpeg;base64,{img_data}",
"width": img.width,
"height": img.height
}
@app.get("/api/annotate/annotations/{image_name:path}")
async def get_annotations(image_name: str):
image_path = get_image_path(image_name)
label_path = get_label_path(image_name)
if not os.path.exists(image_path):
raise HTTPException(status_code=404, detail="Image not found")
annotations, (width, height) = load_yolo_annotations(image_path, label_path)
return {
"annotations": annotations,
"original_width": width,
"original_height": height
}
@app.get("/api/annotate/detect_annotations/{image_name:path}")
async def get_detected_annotations(image_name: str):
image_path = get_image_path(image_name)
label_path = get_label_path(image_name)
if not os.path.exists(image_path):
raise HTTPException(status_code=404, detail="Image not found")
annotations, (width, height) = load_yolo_annotations(image_path, label_path, True)
return {
"annotations": annotations,
"original_width": width,
"original_height": height
}
@app.post("/api/annotate/annotations")
async def save_annotations(request: SaveAnnotationsRequest):
label_path = get_label_path(request.image_name)
success = save_yolo_annotations(
request.annotations,
(request.original_width, request.original_height),
label_path
)
return {"message": f"Saved {len(request.annotations)} annotations successfully"}
@app.delete("/api/annotate/annotations/{image_name:path}")
async def delete_annotations(image_name: str):
label_path = get_label_path(image_name)
if os.path.exists(label_path):
os.remove(label_path)
return {"message": "Annotations deleted"}
return {"message": "No annotations to delete"}
@app.get("/api/annotate/annotations/{image_name:path}/download")
async def download_annotations(image_name: str):
label_path = get_label_path(image_name)
if not os.path.exists(label_path):
raise HTTPException(status_code=404, detail="Annotations not found")
return FileResponse(
label_path,
media_type="text/plain",
filename=os.path.basename(label_path)
)
@app.post("/api/annotate/upload")
async def upload_image(file: UploadFile = File(...)):
if not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
file_path = os.path.join(IMAGE_ROOT, "train", file.filename)
with open(file_path, "wb") as f:
f.write(await file.read())
return {"message": f"Uploaded {file.filename} to train set"} |