File size: 32,764 Bytes
ec6ad2f
 
 
 
 
 
bd1f76d
 
 
 
ec6ad2f
c59b15b
 
 
6d5c490
c59b15b
ec6ad2f
 
 
bd1f76d
 
 
 
 
 
 
 
f0c23ec
ec6ad2f
f0c23ec
ec6ad2f
f0c23ec
ec6ad2f
 
 
 
 
 
 
 
 
f0c23ec
ec6ad2f
f0c23ec
ec6ad2f
f0c23ec
ec6ad2f
 
 
b269113
 
 
 
 
 
bd1f76d
 
ec6ad2f
 
bd1f76d
 
 
ec6ad2f
 
b269113
ec6ad2f
 
bd1f76d
e05ccab
76634d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c59b15b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1f76d
e05ccab
 
 
bd1f76d
e05ccab
b269113
 
 
 
 
 
 
 
 
 
e05ccab
 
b269113
e05ccab
 
 
 
 
 
 
 
 
 
 
 
bd1f76d
e05ccab
 
 
bd1f76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec6ad2f
bd1f76d
 
 
 
 
6d5c490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1f76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5c490
79125e3
 
 
 
bd1f76d
 
 
 
 
 
 
 
 
 
6d5c490
 
 
 
 
 
bd1f76d
6d5c490
bd1f76d
 
 
6d5c490
bd1f76d
 
 
 
 
79125e3
 
bd1f76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec6ad2f
bd1f76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74018ab
 
 
 
 
 
bd1f76d
74018ab
bd1f76d
 
 
 
 
 
74018ab
 
 
bd1f76d
 
74018ab
bd1f76d
 
74018ab
 
 
 
 
bd1f76d
74018ab
 
 
 
 
 
 
 
 
 
 
bd1f76d
74018ab
 
 
 
 
bd1f76d
 
74018ab
bd1f76d
 
 
6d5c490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1f76d
 
 
6d5c490
 
 
2353a2a
6d5c490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
from typing import List, Tuple
from pathlib import Path
from .config import Config

import numpy as np
import cv2
from skimage.morphology import skeletonize, remove_small_objects
from skimage.measure import label
from skimage import measure
from tqdm import tqdm

from PIL import Image
import numpy as np
from sklearn.cluster import KMeans
import math

class ImageProcessor:
    """Handles image preprocessing operations."""
    
    def __init__(self, config: Config = None):
        self.config = config or Config()
        self.index = 0

    def get_output_path(self, output_folder, file_name):
        self.index += 1
        return f'{output_folder}/{self.index:02d}_{file_name}'

    def mask_text_regions(self, input_path, bboxes: List[List[int]], output_filename: str = "1_text_removed.jpg", color: Tuple[int, int, int] = (0, 0, 0)) -> str:
        """Mask text regions in the image to reduce panel extraction noise."""
        image = cv2.imread(input_path)
        if image is None:
            raise FileNotFoundError(f"Could not load image: {input_path}")

        for bbox in bboxes:
            x1, y1, x2, y2 = bbox
            cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness=-1)

        output_path = f'{self.config.output_folder}/{output_filename}'
        cv2.imwrite(output_path, image)
        return str(output_path)
    
    def preprocess_image(self, processed_image_path) -> Tuple[str, str, str]:
        """Preprocess image for panel extraction."""
        image = cv2.imread(processed_image_path)
        if image is None:
            raise FileNotFoundError(f"Could not load image: {processed_image_path}")

        # Convert to grayscale and binary
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # Apply Gaussian blur to reduce noise
        blurred = cv2.GaussianBlur(gray, (3, 3), 0)

        # Canny edge detection
        edges = cv2.Canny(blurred, threshold1=50, threshold2=150, apertureSize=3)
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
        dilated = cv2.dilate(edges, kernel, iterations=2)

        # Save intermediate results
        gray_path = self.get_output_path(self.config.output_folder, "gray.jpg")
        binary_path = self.get_output_path(self.config.output_folder, "binary.jpg")
        dilated_path = self.get_output_path(self.config.output_folder, "dilated.jpg")
        
        cv2.imwrite(str(gray_path), gray)
        cv2.imwrite(str(binary_path), edges)
        cv2.imwrite(str(dilated_path), dilated)
        
        return str(gray_path), str(binary_path), str(dilated_path)

    def invert_if_black_dominates(self, binary):
        # Threshold to binary image
        _, binary = cv2.threshold(binary, 127, 255, cv2.THRESH_BINARY)

        # Count black and white pixels
        black_pixels = np.sum(binary == 0)
        white_pixels = np.sum(binary == 255)

        # If black dominates, invert
        if black_pixels > white_pixels:
            print("🔄 Inverting image because black > white")
            inverted = cv2.bitwise_not(binary)
        else:
            print("✅ No inversion needed, white >= black")
            inverted = binary

        # Save result
        return inverted, black_pixels > white_pixels

    def group_colors(self, processed_image_path, num_clusters: int = 5, file_name="group_colors.jpg", output_folder=None) -> Image.Image:
        """
        Groups similar colors in an image using KMeans clustering.

        Args:
            processed_image_path (str): Path to the image to be color-grouped.
            num_clusters (int): Number of color clusters to form.
            file_name (str): Name of the output image file.
            output_folder (str): Optional output directory.

        Returns:
            str: Path to the saved grouped-color image.
        """
        output_folder = output_folder or self.config.output_folder
        # Load image
        image = Image.open(processed_image_path).convert("RGB")
        np_image = np.array(image)
        h, w = np_image.shape[:2]
        pixels = np_image.reshape(-1, 3)

        # Run KMeans
        kmeans = KMeans(n_clusters=num_clusters, random_state=42, n_init='auto')
        labels = kmeans.fit_predict(pixels)
        centers = kmeans.cluster_centers_.astype(np.uint8)

        # Replace pixels with their cluster center color
        clustered_pixels = centers[labels].reshape(h, w, 3)

        # Save using OpenCV (convert RGB to BGR)
        output_path = self.get_output_path(output_folder, file_name)
        clustered_bgr = clustered_pixels[:, :, ::-1]
        cv2.imwrite(output_path, clustered_bgr)

        return str(output_path)

    def thin_image_borders(self, processed_image_path: str, file_name="thin_border.jpg", output_folder=None) -> str:
        """
        Clean dilated image by thinning thick borders and removing hanging clusters.
        """
        output_folder = output_folder or self.config.output_folder
        # Load image
        img = cv2.imread(processed_image_path)
        # Convert to grayscale and binary
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # _, binary = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY_INV)

        # Apply Gaussian blur to reduce noise
        blurred = cv2.GaussianBlur(gray, (3, 3), 0)

        # Canny edge detection
        edges = cv2.Canny(blurred, threshold1=50, threshold2=150, apertureSize=3)

        # Skeletonize
        skeleton = skeletonize(edges).astype(np.uint8)

        # Remove small hanging clusters
        labeled = label(skeleton, connectivity=2)
        cleaned = remove_small_objects(labeled, min_size=150)  # Adjust min_size for more/less pruning

        # Convert back to 0–255 uint8 image
        final = (cleaned > 0).astype(np.uint8) * 255

        # Invert back if needed
        result = 255 - final

        # Save
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, result)
        return str(output_path)

    def remove_dangling_lines(self, image_path, file_name="dangling_lines_removed.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder
        gray = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

        # Threshold to binary mask (black lines = True, white = False)
        binary = gray < 128  # black parts (lines/dangling strokes)
        binary = binary.astype(bool)

        # Label connected components
        labeled = label(binary, connectivity=2)

        # Remove small connected components (dangling lines, fragments)
        cleaned = remove_small_objects(labeled, min_size=500)  # Adjust min_size as needed

        # Convert back to mask (255 = black lines kept, 255 background = white)
        final_mask = (cleaned > 0).astype(np.uint8) * 255

        # Invert mask to match original layout: black lines on white background
        final_image = 255 - final_mask
        # Save result
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, final_image)
        return output_path

    def remove_diagonal_lines(self, image_path, file_name="remove_diagonal_lines.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder
        
        # Read the image
        img = cv2.imread(image_path)
        
        # Convert to grayscale
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        
        # Create binary image (black lines on white background)
        _, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
        
        # Create kernels for detecting horizontal and vertical lines
        # Adjust kernel size based on your image - larger for thicker lines
        kernel_length = max(gray.shape[0], gray.shape[1]) // 30
        
        # Horizontal kernel
        horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_length, 1))
        # Vertical kernel  
        vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, kernel_length))
        
        # Detect horizontal lines
        horizontal_lines = cv2.morphologyEx(binary, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
        
        # Detect vertical lines
        vertical_lines = cv2.morphologyEx(binary, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
        
        # Combine horizontal and vertical lines
        rect_lines = cv2.addWeighted(horizontal_lines, 1, vertical_lines, 1, 0)
        
        # Create final result - white background with black rectangular lines only
        result = np.ones_like(gray) * 255  # White background
        result[rect_lines > 0] = 0  # Black lines where rectangular lines were detected

        # Save result
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, result)
        return output_path

    def thick_black(self, image_path, thickness=20, file_name="thick_black.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder
        # Load image
        img = cv2.imread(image_path)

        # Convert to grayscale
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        # Create a binary mask where black pixels are 1 (foreground)
        _, binary = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY_INV)

        # Define kernel size based on desired thickness
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (thickness, thickness))

        # Dilate the black areas
        dilated = cv2.dilate(binary, kernel, iterations=1)

        # Invert back so black is 0 again
        # result_mask = cv2.bitwise_not(dilated)

        # Apply mask on original image
        result = img.copy()
        result[np.where(dilated == 255)] = (0, 0, 0)

        # Save result
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, result)
        return output_path

    def to_int_box(self, line):
        return map(int, line[0])  # Works for both Hough and LSD formats

    def remove_diagonal_lines_and_set_white(self, image_path, file_name="remove_diagonal_lines_and_set_white.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder
        # Load image
        image = cv2.imread(image_path)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # Edge detection
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        blurred = cv2.GaussianBlur(gray, (3, 3), 0)
        edges = cv2.Canny(blurred, 50, 150, apertureSize=3)

        # Dilate to connect broken segments
        kernel = np.ones((2, 2), np.uint8)
        edges = cv2.dilate(edges, kernel, iterations=1)

        # More sensitive Hough transform
        # HoughLinesP_lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=30, minLineLength=5, maxLineGap=10)

        # Detect lines using Hough Transform
        lsd = cv2.createLineSegmentDetector(0)
        lines, _, _, _ = lsd.detect(gray)

        # Copy image to edit
        output = image.copy()

        combined_lines = []

        if lines is not None:
            combined_lines.extend(lines)

        # if HoughLinesP_lines is not None:
        #     combined_lines.extend(HoughLinesP_lines)

        if combined_lines is not None:
            for line in combined_lines:
                x1, y1, x2, y2 = self.to_int_box(line)  # Convert float to int

                # Calculate angle
                angle = np.abs(np.arctan2(y2 - y1, x2 - x1) * 180.0 / np.pi)

                # Filter out horizontal and vertical lines
                if (80 < angle < 100) or (170 < angle < 190) or angle < 10 or angle > 350:
                    continue
                else:
                    # Get bounding box with padding
                    padding = 2
                    xmin = min(x1, x2) - padding
                    xmax = max(x1, x2) + padding
                    ymin = min(y1, y2) - padding
                    ymax = max(y1, y2) + padding

                    # Draw white rectangle (erase diagonal line)
                    cv2.rectangle(output, (xmin, ymin), (xmax, ymax), (255, 255, 255), thickness=-1)

        # Save cleaned image
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, output)
        return output_path

    def remove_small_regions(self, image_path, file_name="remove_small_regions.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder

        # Load image in grayscale
        img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
        visual = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)  # For debugging with colored rectangles

        if img is None:
            raise FileNotFoundError(f"Could not load image: {image_path}")

        height_, width_ = img.shape
        min_area = height_ * width_ * self.config.min_area_ratio

        # Threshold: make black = foreground
        _, binary = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)

        # Label connected regions
        labeled = measure.label(binary)
        regions = measure.regionprops(labeled)

        # Create clean mask (copy of original binary)
        clean_mask = np.copy(binary)

        for region in regions:
            area = region.area
            minr, minc, maxr, maxc = region.bbox
            width = maxc - minc
            height = maxr - minr

            # Bounding box filter
            if width < width_ * self.config.min_width_ratio and height < height_ * self.config.min_height_ratio:
                if (width/width_) < 0.9 and (height/height_) < 0.9:
                    clean_mask[labeled == region.label] = 0  # Remove small region
                    cv2.rectangle(visual, (minc, minr), (maxc, maxr), (0, 0, 255), 2)
                    continue

            # Crop and analyze region for line orientation
            region_crop = binary[minr:maxr, minc:maxc]
            edges = cv2.Canny(region_crop, 50, 150, apertureSize=3)
            lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=30, minLineLength=10, maxLineGap=5)

            if lines is not None:
                for line in lines:
                    x1, y1, x2, y2 = line[0]
                    angle = np.abs(np.arctan2(y2 - y1, x2 - x1) * 180.0 / np.pi)
                    # length = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
                    line_width = abs(x2 - x1)
                    line_height = abs(y2 - y1)

                    if line_height < height_ * self.config.min_height_ratio and line_width < width_ * self.config.min_width_ratio:
                        break
                else:
                    # Only runs if no 'break' occurred
                    # If no qualifying line found, remove region
                    clean_mask[labeled == region.label] = 0
                    cv2.rectangle(visual, (minc, minr), (maxc, maxr), (0, 255, 255), 2)
            elif width < width_ * self.config.min_width_ratio and height < height_ * self.config.min_height_ratio:
                # No lines, remove region
                clean_mask[labeled == region.label] = 0
                cv2.rectangle(visual, (minc, minr), (maxc, maxr), (255, 0, 0), 2)

        # Save debug visualization
        output_path = self.get_output_path(output_folder, f"debug_{file_name}")
        cv2.imwrite(output_path, visual)

        # Invert back to original format: black lines on white
        cleaned = cv2.bitwise_not(clean_mask)
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, cleaned)
        return output_path


    def thin_black(self, image_path, file_name="thin_black.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder
        # Load the image (replace 'debug_dilated.jpg' with your actual file path if needed)
        img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

        # Check if the image loaded correctly
        if img is None:
            raise ValueError("Image not loaded. Check the file path.")

        # Threshold to binary (invert if lines are black on white)
        _, binary = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY_INV)

        # Perform thinning to reduce to 1-pixel lines
        try:
            # Use Zhang-Suen thinning if opencv-contrib is installed
            thinned = cv2.ximgproc.thinning(binary)
        except AttributeError:
            # Fallback: Morphological skeletonization
            skel = np.zeros(binary.shape, np.uint8)
            element = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
            while True:
                eroded = cv2.erode(binary, element)
                temp = cv2.dilate(eroded, element)
                temp = cv2.subtract(binary, temp)
                skel = cv2.bitwise_or(skel, temp)
                binary = eroded.copy()
                if cv2.countNonZero(binary) == 0:
                    break
            thinned = skel

        # Invert back if needed (for white lines on black background)
        thinned = 255 - thinned

        # Save result
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, thinned)
        return output_path

    def thin_lines_direct(self, image_path, file_name="thin_lines_direct.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder
        
        # Read image
        img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
        if img is None:
            raise ValueError("Could not load image")
        
        # Convert to binary (0 = black lines, 255 = white background)
        _, binary = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
        
        # Create result image (start with white background)
        result = np.full_like(binary, 255)  # All white
        
        height, width = binary.shape
        print("Processing thick lines...")
        
        # Method 1: Scan rows - for each thick horizontal segment, keep only bottom pixel
        print("Step 1: Thinning horizontal segments...")
        for row in range(height):
            col = 0
            while col < width:
                # If we hit a black pixel
                if binary[row, col] == 0:  # Black pixel
                    # Find the end of this horizontal segment
                    start_col = col
                    while col < width and binary[row, col] == 0:
                        col += 1
                    end_col = col - 1
                    
                    # For this horizontal segment, check if it's part of a thick vertical region
                    segment_width = end_col - start_col + 1
                    
                    if segment_width >= 1:  # Any horizontal segment
                        # Check how thick this region is vertically at the middle
                        mid_col = (start_col + end_col) // 2
                        
                        # Find vertical thickness at this point
                        thickness = self.get_vertical_thickness(binary, row, mid_col)
                        
                        if thickness > 1:
                            # This is part of a thick region - keep only the bottom pixel
                            bottom_row = row + thickness - 1
                            if bottom_row < height:
                                result[bottom_row, start_col:end_col+1] = 0  # Draw black line
                        else:
                            # Already thin - keep as is
                            result[row, start_col:end_col+1] = 0
                else:
                    col += 1
        
        # Save step 1
        # cv2.imwrite(f'{self.config.output_folder}/step1_horizontal_thinned.png', result)
        
        # Method 2: Scan columns - for each thick vertical segment, keep only right pixel
        print("Step 2: Thinning vertical segments...")
        
        # Start fresh for vertical processing
        result_v = np.full_like(binary, 255)  # All white
        
        for col in range(width):
            row = 0
            while row < height:
                # If we hit a black pixel
                if binary[row, col] == 0:  # Black pixel
                    # Find the end of this vertical segment
                    start_row = row
                    while row < height and binary[row, col] == 0:
                        row += 1
                    end_row = row - 1
                    
                    segment_height = end_row - start_row + 1
                    
                    if segment_height >= 1:  # Any vertical segment
                        # Check how thick this region is horizontally at the middle
                        mid_row = (start_row + end_row) // 2
                        
                        # Find horizontal thickness at this point
                        thickness = self.get_horizontal_thickness(binary, mid_row, col)
                        
                        if thickness > 1:
                            # This is part of a thick region - keep only the right pixel
                            right_col = col + thickness - 1
                            if right_col < width:
                                result_v[start_row:end_row+1, right_col] = 0  # Draw black line
                        else:
                            # Already thin - keep as is
                            result_v[start_row:end_row+1, col] = 0
                else:
                    row += 1
        
        # Save step 2
        # cv2.imwrite(f'{self.config.output_folder}/step2_vertical_thinned.png', result_v)
        
        # Method 3: Combine both results
        print("Step 3: Combining results...")
        final_result = cv2.bitwise_and(result, result_v)  # Keep both thin lines
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, final_result)
        
        return output_path

    def get_vertical_thickness(self, binary, start_row, col):
        """Get the vertical thickness of a black region starting from start_row, col"""
        height = binary.shape[0]
        thickness = 0
        
        row = start_row
        while row < height and binary[row, col] == 0:  # Black pixel
            thickness += 1
            row += 1
        
        return thickness

    def get_horizontal_thickness(self, binary, row, start_col):
        """Get the horizontal thickness of a black region starting from row, start_col"""
        width = binary.shape[1]
        thickness = 0
        
        col = start_col
        while col < width and binary[row, col] == 0:  # Black pixel
            thickness += 1
            col += 1
        
        return thickness

    def remove_diagonal_only_cells(self, image_path, file_name="remove_diagonal_only_cells.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder
        # Load the image in grayscale
        img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
        if img is None:
            raise ValueError("Unable to load the image. Check the file path.")
        
        # Threshold to binary (invert if lines are black on white background)
        _, binary = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY_INV)
        
        # Pad image to handle border cells easily
        padded = np.pad(binary, pad_width=1, mode='constant', constant_values=0)
        rows, cols = binary.shape
        output = padded.copy()
        
        # Scan each cell (excluding padding)
        for r in range(1, rows + 1):
            for c in range(1, cols + 1):
                if padded[r, c] == 255:  # Assuming white (255) represents active cells/lines
                    # Get 8 neighbors
                    neighbors = {
                        'top_left': padded[r-1, c-1],
                        'top': padded[r-1, c],
                        'top_right': padded[r-1, c+1],
                        'left': padded[r, c-1],
                        'right': padded[r, c+1],
                        'bottom_left': padded[r+1, c-1],
                        'bottom': padded[r+1, c],
                        'bottom_right': padded[r+1, c+1]
                    }
                    
                    # Helper: Count active neighbors (255)
                    active_count = sum(1 for v in neighbors.values() if v == 255)
                    
                    # Conditions as specified:
                    # 1) Only top-left and bottom-right
                    cond1 = (neighbors['top_left'] == 255 and neighbors['bottom_right'] == 255 and
                            active_count == 2)
                    
                    # 2) Only top-left
                    cond2 = (neighbors['top_left'] == 255 and active_count == 1)
                    
                    # 3) Only bottom-right
                    cond3 = (neighbors['bottom_right'] == 255 and active_count == 1)
                    
                    # 4) Only top-right and bottom-left
                    cond4 = (neighbors['top_right'] == 255 and neighbors['bottom_left'] == 255 and
                            active_count == 2)
                    
                    # 5) Only top-right
                    cond5 = (neighbors['top_right'] == 255 and active_count == 1)
                    
                    # 6) Only bottom-left
                    cond6 = (neighbors['bottom_left'] == 255 and active_count == 1)
                    
                    # Remove cell if any condition matches (set to 0)
                    if cond1 or cond2 or cond3 or cond4 or cond5 or cond6:
                        output[r, c] = 0
        
        # Remove padding and invert back to original style (black lines on white)
        cleaned = output[1:-1, 1:-1]
        result = cv2.bitwise_not(cleaned)
        
        # Save the result
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, result)
        return output_path

    def remove_small_continuity_components(
        self,
        image_path,
        file_name="remove_small_continuity_components.jpg",
        output_folder=None,
    ):
        output_folder = output_folder or self.config.output_folder

        # Load the image in grayscale
        img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
        if img is None:
            raise ValueError("Unable to load the image. Check the file path.")

        height, width = img.shape
        min_height = height * self.config.min_height_ratio
        min_width = width * self.config.min_width_ratio

        # Threshold to binary (invert if lines are black on white background)
        _, binary = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY_INV)

        # Perform connected component labeling (8-connectivity)
        num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(binary, connectivity=8)

        # Create output copies
        cleaned_output = binary.copy()
        debug_output = cv2.cvtColor(binary.copy(), cv2.COLOR_GRAY2BGR)  # For visualizing removed components

        for label in tqdm(range(1, num_labels), desc="Processing labels"):
            x, y, w, h, area = stats[label]

            # Filter out small components based on width and height
            if h < min_height and w < min_width:
                cleaned_output[labels == label] = 0
                debug_output[labels == label] = [0, 0, 255]  # Mark removed components in red

        # Invert back to original style
        final_result = cv2.bitwise_not(cleaned_output)

        # Save the final and debug outputs
        output_path = self.get_output_path(output_folder, file_name)
        debug_path = self.get_output_path(output_folder, file_name.replace(".jpg", "_debug.jpg"))

        cv2.imwrite(output_path, final_result)
        cv2.imwrite(debug_path, debug_output)

        return output_path


    def connect_horizontal_vertical_gaps(self, image_path, file_name='connected_output.jpg', output_folder=None):
        output_folder = output_folder or self.config.output_folder

        image = cv2.imread(image_path)
        height, width = image.shape[:2]
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        edges = cv2.Canny(gray, 50, 150, apertureSize=3)

        # Detect all lines
        lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)

        output = image.copy()

        def angle_of_line(x1, y1, x2, y2):
            return abs(math.degrees(math.atan2(y2 - y1, x2 - x1)))

        # Filter for only horizontal (≈0°) and vertical (≈90°) lines
        filtered_lines = []
        if lines is not None:
            for line in lines:
                x1, y1, x2, y2 = line[0]
                angle = angle_of_line(x1, y1, x2, y2)
                min_width = 0
                min_height = 0

                if angle < 5:
                    line_width = abs(x2 - x1)
                    if line_width >= min_width:
                        filtered_lines.append([x1, y1, x2, y2])

                elif 85 < angle < 95:
                    line_height = abs(y2 - y1)
                    if line_height >= min_height:
                        filtered_lines.append([x1, y1, x2, y2])


        # Merge similar lines (if needed)
        merged_lines = []
        used = [False] * len(filtered_lines)
        horizontal_alignment_threshold = 5
        horizontal_distance_threshold = width * self.config.min_width_ratio
        vertical_alignment_threshold = 5
        vertical_distance_threshold = height * self.config.min_height_ratio
        overlap_allowance = 10

        for i in range(len(filtered_lines)):
            if used[i]:
                continue
            x1a, y1a, x2a, y2a = filtered_lines[i]
            merged = [x1a, y1a, x2a, y2a]
            used[i] = True
            for j in range(i + 1, len(filtered_lines)):
                if used[j]:
                    continue
                x1b, y1b, x2b, y2b = filtered_lines[j]

                # Check if both are horizontal
                if abs(y1a - y2a) < horizontal_alignment_threshold and abs(y1b - y2b) < horizontal_alignment_threshold and abs(y1a - y1b) < horizontal_distance_threshold:
                    if max(x1a, x2a) >= min(x1b, x2b) - overlap_allowance or max(x1b, x2b) >= min(x1a, x2a) - overlap_allowance:
                        merged = [
                            min(merged[0], merged[2], x1b, x2b),
                            y1a,
                            max(merged[0], merged[2], x1b, x2b),
                            y1a
                        ]
                        used[j] = True

                # Check if both are vertical
                elif abs(x1a - x2a) < vertical_alignment_threshold and abs(x1b - x2b) < vertical_alignment_threshold and abs(x1a - x1b) < vertical_distance_threshold:
                    if max(y1a, y2a) >= min(y1b, y2b) - overlap_allowance or max(y1b, y2b) >= min(y1a, y2a) - overlap_allowance:
                        merged = [
                            x1a,
                            min(merged[1], merged[3], y1b, y2b),
                            x1a,
                            max(merged[1], merged[3], y1b, y2b)
                        ]
                        used[j] = True


            merged_lines.append(merged)

        # Draw merged lines
        for x1, y1, x2, y2 in merged_lines:
            cv2.line(output, (x1, y1), (x2, y2), (0, 0, 0), 20)
        
        # Save the result
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, output)
        return output_path

    def detect_small_objects_and_set_white(self, image_path, file_name="detect_small_objects_and_set_white.jpg", output_folder=None):
        output_folder = output_folder or self.config.output_folder

        # Load image
        image = cv2.imread(image_path)
        height, width = image.shape[:2]
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # Threshold to binary
        _, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)

        # Find contours (external only or all)
        contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        # Draw bounding boxes
        output = image.copy()
        for cnt in contours:
            x, y, w, h = cv2.boundingRect(cnt)

            if h < height * self.config.min_height_ratio and w < width * self.config.min_width_ratio:
                cv2.rectangle(output, (x, y), (x + w, y + h), (255, 255, 255), -1)

        # Save output
        output_path = self.get_output_path(output_folder, file_name)
        cv2.imwrite(output_path, output)
        return output_path