File size: 11,388 Bytes
05b52e0
 
 
 
 
 
 
 
 
cd9bbc0
0b2f929
05b52e0
 
 
 
 
 
 
 
bb49e0d
3b74526
bb49e0d
05b52e0
bb49e0d
05b52e0
 
bb49e0d
05b52e0
 
 
bb49e0d
05b52e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b2f929
05b52e0
 
 
 
 
 
 
 
 
 
 
 
 
 
55be59c
 
 
 
 
 
 
 
 
 
 
bb49e0d
55be59c
 
 
 
 
 
 
 
 
05b52e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55be59c
 
 
 
05b52e0
55be59c
05b52e0
55be59c
 
 
05b52e0
 
 
cd9bbc0
05b52e0
 
 
 
 
 
cd9bbc0
 
 
 
05b52e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dde7c9
 
e3f9b7d
 
 
 
 
05b52e0
f9b5ba3
05b52e0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from .config import Config
from ultralytics import YOLO 
from PIL import Image 
import cv2
from . import constant
from . import utils
import os
import shutil
import requests
from pathlib import Path
from . import common

class LLMPanelExtractor:
	"""Handles image preprocessing operations."""
	
	def __init__(self, config: Config = None):
		self.config = config or Config()

		# Check if YOLO model exists; if not, download it to the specified path
		yolo_base_model_path = f'{self.config.yolo_base_model_path}_best.pt'
		# yolo_base_model_path = f'{self.config.yolo_trained_model_path}'
		if not os.path.exists(yolo_base_model_path):
			url = "https://huggingface.co/mosesb/best-comic-panel-detection/resolve/main/best.pt"
			print(f"Downloading YOLO model to {yolo_base_model_path}...")
			response = requests.get(url)
			response.raise_for_status()  # Raise an error if the download fails
			with open(yolo_base_model_path, "wb") as f:
				f.write(response.content)
			print("YOLO model downloaded successfully.")

		self.yolo_model = YOLO(yolo_base_model_path)
		os.makedirs(self.config.output_folder, exist_ok=True)

	def extract_bounding_boxes(self, detection_result_boxes):
		"""Extract bounding box coordinates from YOLO detection results."""
		bounding_boxes = []
		for detection_box in detection_result_boxes.xyxy:
			# Extract coordinates
			x_min, y_min, x_max, y_max = map(int, detection_box)
			bounding_boxes.append((x_min, y_min, x_max, y_max))

		return bounding_boxes

	def crop_and_save_detected_panels(self, detected_boxes):
		"""Crop detected boxes and save them in separate folders"""
		if len(detected_boxes) == 0:
			print(f"No boxes detected for {self.config.org_input_path}")
			return

		source_image = cv2.imread(self.config.org_input_path)
		for box_coordinates in detected_boxes:
			# Extract coordinates
			x_min, y_min, x_max, y_max = box_coordinates
			
			# Crop the image
			cropped_panel = source_image[y_min:y_max, x_min:x_max]
			
			# Save cropped image
			constant.INDEX += 1
			panel_output_path = f"{self.config.output_folder}/{constant.INDEX:04d}_panel_{x_min, y_min, x_max, y_max}.jpg"
			cv2.imwrite(panel_output_path, cropped_panel)

	def pre_all_processed_boxes(self, all_processed_boxes, image_width, image_height):
		all_processed_boxes = utils.extend_boxes_to_image_border(
			all_processed_boxes, 
			(image_width, image_height), 
			self.config.min_width_ratio, 
			self.config.min_height_ratio
		)
		all_processed_boxes = sorted(all_processed_boxes, key=lambda box: (box[1], box[0]))  # sort by y_min, then x_min
		all_processed_boxes = utils.extend_to_nearby_boxes(
			all_processed_boxes, 
			(image_width, image_height), 
			self.config.min_width_ratio, 
			self.config.min_height_ratio
		)
		return all_processed_boxes

	def detect_and_extract_panels(self, input_image_path=None, existing_boxes=None, confidence_threshold=0.9):
		"""Main method to detect and extract panels from an image."""
		if not input_image_path:
			input_image_path = self.config.org_input_path

		# Get image dimensions
		with Image.open(input_image_path) as input_image:
			image_width, image_height = input_image.size

		# Run YOLO detection
		detection_results = self.yolo_model.predict(source=input_image_path, device=common.get_device())
		first_detection_result = detection_results[0]
		newly_detected_boxes = None
		all_processed_boxes = []
		
		# Add existing boxes if provided
		if existing_boxes:
			all_processed_boxes.extend(existing_boxes)
		
		# Filter boxes by confidence threshold
		if first_detection_result.boxes is not None:
			high_confidence_filter = first_detection_result.boxes.conf >= confidence_threshold
			if high_confidence_filter.sum() > 0:
				first_detection_result.boxes = first_detection_result.boxes[high_confidence_filter]
				newly_detected_boxes = self.extract_bounding_boxes(first_detection_result.boxes)
				newly_detected_boxes = utils.is_valid_panel((image_width, image_height), newly_detected_boxes, self.config.min_width_ratio, self.config.min_height_ratio)
				if newly_detected_boxes:
					all_processed_boxes.extend(self.extract_bounding_boxes(first_detection_result.boxes))

					# Process and extend boxes
					all_processed_boxes = self.pre_all_processed_boxes(all_processed_boxes, image_width, image_height)

					# Crop and save detected panels
					self.crop_and_save_detected_panels(newly_detected_boxes)
					
					# Save prediction visualization
					visualization_result = first_detection_result.plot(masks=False)
					constant.INDEX += 1
					debug_output_path = f"{self.config.output_folder}/{constant.INDEX:04d}_debug.jpg"
					Image.fromarray(visualization_result[..., ::-1]).save(debug_output_path)
					
					# Create black and white mask
					constant.INDEX += 1
					masked_output_path = f"{self.config.output_folder}/{constant.INDEX:04d}_draw_black.jpg"
					masked_image_path = utils.draw_black(self.config.org_input_path, all_processed_boxes, masked_output_path, stripe=False)
					return masked_image_path, newly_detected_boxes

		# Process boxes even if no new detections
		all_processed_boxes = self.pre_all_processed_boxes(all_processed_boxes, image_width, image_height)

		constant.INDEX += 1
		masked_output_path = f"{self.config.output_folder}/{constant.INDEX:04d}_draw_black.jpg"
		masked_image_path = utils.draw_black(self.config.org_input_path, all_processed_boxes, masked_output_path, stripe=False)
		return masked_image_path, newly_detected_boxes

	def check_for_remaining_similarity(self, current_processed_image_path, existing_boxes):
		# Get image dimensions
		with Image.open(self.config.org_input_path) as input_image:
			image_width, image_height = input_image.size

		all_processed_boxes = self.pre_all_processed_boxes(existing_boxes, image_width, image_height)

		constant.INDEX += 1
		similar_remaining_regions_path = f"{self.config.output_folder}/{constant.INDEX:04d}_remaining_similarity_debug.jpg"
		similar_remaining_box = utils.find_similar_remaining_regions(all_processed_boxes, (image_width, image_height), similar_remaining_regions_path)
		if similar_remaining_box:
			similar_remaining_box = utils.is_valid_panel((image_width, image_height), similar_remaining_box, self.config.min_width_ratio, self.config.min_height_ratio)
			if similar_remaining_box:
				self.crop_and_save_detected_panels(similar_remaining_box)
				existing_boxes.extend(similar_remaining_box)

				all_processed_boxes = self.pre_all_processed_boxes(existing_boxes, image_width, image_height)

				constant.INDEX += 1
				current_processed_image_path = f"{self.config.output_folder}/{constant.INDEX:04d}_remaining_similarity_draw_black.jpg"
				current_processed_image_path = utils.draw_black(self.config.org_input_path, all_processed_boxes, current_processed_image_path, stripe=False)

		return current_processed_image_path, existing_boxes

def extract_panel_via_llm(input_image_path, config=None, reset=True):
	"""Main function to extract panels using various image processing techniques."""
	# Initialize configuration
	extractor_config = config or Config()
	extractor_config.org_input_path = input_image_path

	# Clean output folder
	if reset:
		if Path(extractor_config.output_folder).exists():
			shutil.rmtree(extractor_config.output_folder, ignore_errors=True)
		Path(extractor_config.output_folder).mkdir(exist_ok=True)

	# Initialize extractor
	panel_extractor = LLMPanelExtractor(extractor_config)

	current_processed_image_path = extractor_config.org_input_path
	accumulated_detected_boxes = []
	all_processed_boxes = []
	
	# Get original image dimensions
	with Image.open(current_processed_image_path) as original_image:
		original_width, original_height = original_image.size

	# Define image processing techniques to try
	processing_techniques = [
		{
			'name': 'clahe',
			'function': utils.convert_to_clahe,
			'confidence_level': 1.0,
			'description': 'CLAHE (Contrast Limited Adaptive Histogram Equalization)'
		},
		{
			'name': 'grayscale',
			'function': utils.convert_to_grayscale_pil,
			'confidence_level': 1.0,
			'description': 'Grayscale conversion'
		},
		{
			'name': 'lab_l',
			'function': utils.convert_to_lab_l,
			'confidence_level': 1.0,
			'description': 'LAB L-channel extraction'
		},
		{
			'name': 'group_color',
			'function': utils.convert_to_group_colors,
			'confidence_level': 0.1,
			'image_path': extractor_config.org_input_path,
			'description': 'Group Color extraction'
		}
	]

	# Process with different techniques until white ratio threshold is met
	for technique in processing_techniques:
		iteration_count = 0
		confidence_level = technique["confidence_level"]
		if technique.get("image_path", None) and utils.box_covered_ratio(panel_extractor.pre_all_processed_boxes(accumulated_detected_boxes, original_width, original_height), (original_width, original_height)) < 0.95:
			current_processed_image_path = technique.get("image_path")
		
		while (utils.box_covered_ratio(panel_extractor.pre_all_processed_boxes(accumulated_detected_boxes, original_width, original_height), (original_width, original_height)) < 0.95 and confidence_level > 0):
			
			print(f"\n{technique['description']} process iteration: {iteration_count} confidence level: {confidence_level}")
			iteration_count += 1
			confidence_level -= 0.1
			
			# Apply image processing technique
			constant.INDEX += 1
			processed_output_path = f"{extractor_config.output_folder}/{constant.INDEX:04d}_convert_to_{technique['name']}.jpg"
			current_processed_image_path = technique['function'](current_processed_image_path, processed_output_path)
			
			# Run panel detection on processed image
			current_processed_image_path, newly_detected_boxes = panel_extractor.detect_and_extract_panels(
				input_image_path=current_processed_image_path, 
				existing_boxes=accumulated_detected_boxes, 
				confidence_threshold=confidence_level
			)
			if newly_detected_boxes:
				accumulated_detected_boxes.extend(newly_detected_boxes)

			current_processed_image_path, accumulated_detected_boxes = panel_extractor.check_for_remaining_similarity(current_processed_image_path, accumulated_detected_boxes)
			all_processed_boxes = panel_extractor.pre_all_processed_boxes(accumulated_detected_boxes, original_width, original_height)

	remain_boxes = utils.get_remaining_areas((original_width, original_height), all_processed_boxes)
	if remain_boxes:
		remain_boxes = utils.is_valid_panel((original_width, original_height), remain_boxes, extractor_config.min_width_ratio, extractor_config.min_height_ratio)
		if remain_boxes:
			panel_extractor.crop_and_save_detected_panels(remain_boxes)
			all_processed_boxes.extend(remain_boxes)
			accumulated_detected_boxes.extend(remain_boxes)

	all_path = [file for file in os.listdir(extractor_config.output_folder) if "_panel_" in file]
	print(f"Processing complete. Final result saved to: {extractor_config.output_folder}")
	print(f"Total panels detected: {len(all_path)}")
	return all_path, accumulated_detected_boxes, all_processed_boxes


if __name__ == "__main__":
	import argparse

	# Parse command-line arguments
	argument_parser = argparse.ArgumentParser(description="Run panel extractor on an image")
	argument_parser.add_argument("--input", type=str, required=True, help="Path to input image")
	parsed_arguments = argument_parser.parse_args()
	
	final_result_path, total_detected_boxes = extract_panel_via_llm(parsed_arguments.input)