Spaces:
Build error
Build error
File size: 17,955 Bytes
ec6ad2f f0c23ec bd1f76d f0dcf93 ec6ad2f b269113 ec6ad2f b269113 ec6ad2f b269113 ec6ad2f 943db10 ec6ad2f 943db10 ec6ad2f b269113 0622274 ec6ad2f 0622274 ec6ad2f 0622274 bd1f76d 0622274 bd1f76d 0622274 ec6ad2f 0622274 bd1f76d 0622274 b269113 0622274 b269113 0622274 ec6ad2f e05ccab ec6ad2f b269113 ec6ad2f b269113 f0c23ec bd1f76d f0dcf93 f0c23ec ec6ad2f e30f731 ec6ad2f 943db10 f0c23ec bd1f76d f0c23ec ec6ad2f f0c23ec d00f531 bd1f76d d00f531 bd1f76d d00f531 bd1f76d d00f531 f0c23ec d00f531 bd1f76d f0c23ec bd1f76d d00f531 f0c23ec bd1f76d f0c23ec e3f1283 bd1f76d e3f1283 f0dcf93 e3f1283 f0dcf93 bd1f76d e30f731 ec6ad2f f0c23ec ec6ad2f 943db10 f0c23ec ec6ad2f bd1f76d f0c23ec bd1f76d f0c23ec e30f731 f0c23ec bd1f76d f0c23ec ec6ad2f f0c23ec d00f531 f0c23ec bd1f76d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
from typing import List, Tuple
from .config import Config
import numpy as np
import cv2
from dataclasses import dataclass
import os
import re
from .utils import remove_duplicate_boxes, count_panels_inside, extend_boxes_to_image_border
@dataclass
class PanelData:
"""Represents an extracted comic panel."""
x_start: int
y_start: int
x_end: int
y_end: int
width: int
height: int
area: int
@classmethod
def from_coordinates(cls, x1: int, y1: int, x2: int, y2: int) -> 'PanelData':
"""Create PanelData from coordinates."""
return cls(
x_start=x1,
y_start=y1,
x_end=x2,
y_end=y2,
width=x2 - x1,
height=y2 - y1,
area=(x2 - x1) * (y2 - y1)
)
class PanelExtractor:
"""Handles comic panel extraction using black percentage analysis."""
def __init__(self, config: Config):
self.config = config
def extract_panels(self, dilated_path: str, row_thresh: int = 20, col_thresh: int = 20) -> Tuple[List[np.ndarray], List[PanelData]]:
"""Extract comic panels using black percentage scan."""
dilated = cv2.imread(dilated_path, cv2.IMREAD_GRAYSCALE)
original = cv2.imread(self.config.input_path)
if dilated is None or original is None:
raise FileNotFoundError("Could not load dilated or original image")
height, width = dilated.shape
# Find row gutters and panel rows
panel_rows = self._find_panel_rows(dilated, row_thresh)
# Extract panels from each row
all_panels = []
for y1, y2 in panel_rows:
row_panels = self._extract_panels_from_row(dilated, y1, y2, col_thresh)
all_panels.extend(row_panels)
# Filter panels by size
filtered_panels = self._filter_panels_by_size(
all_panels, width, height
)
# Extract panel images and save
panel_images, panel_data, all_panel_path = self._save_panels(
filtered_panels, original, width, height
)
return panel_images, panel_data, all_panel_path
def _find_panel_rows(self, dilated: np.ndarray, row_thresh: int) -> List[Tuple[int, int]]:
"""Find panel rows where consecutive rows meet the threshold and height constraint."""
height, width = dilated.shape
# Calculate black percentage for each row
row_black_percentage = np.sum(dilated == 0, axis=1) / width * 100
# Find all rows meeting threshold
black_rows = [y for y, p in enumerate(row_black_percentage) if p >= row_thresh]
# Forcefully include first and last row
if 0 not in black_rows:
black_rows.insert(0, 0)
if (height) not in black_rows:
black_rows.append(height)
print(f'π Row Points:: {black_rows}')
# Group consecutive rows into gutters
row_gutters = []
if black_rows:
start_row = black_rows[0]
for i, end_row in enumerate(black_rows):
# Only extend if combined height meets min_height_ratio
combined_height = end_row - start_row
if combined_height / height >= self.config.min_height_ratio:
print(f'π {i+1}) Start: {start_row:04d} | End: {end_row:04d} | Total: {combined_height:04d} | Ratio: {(combined_height / height):04f}')
row_gutters.append((start_row, end_row))
start_row = end_row
elif len(black_rows) == i + 1:
row_gutters[-1] = (row_gutters[-1][0], end_row)
print(f"β
Detected panel row gutters: {row_gutters}")
# β‘ Draw detected rows on a color copy
visual = cv2.cvtColor(dilated, cv2.COLOR_GRAY2BGR)
for (y1, y2) in row_gutters:
cv2.line(visual, (0, y1), (width, y1), (0, 255, 0), thickness=5)
cv2.line(visual, (0, y2), (width, y2), (0, 0, 255), thickness=5)
# Save visualization
output_path = f"{self.config.output_folder}/row_gutters_visualization.jpg"
cv2.imwrite(output_path, visual)
print(f"π Saved row gutter visualization: {output_path}")
return row_gutters
def _find_panel_columns(self, dilated: np.ndarray, col_thresh: int) -> List[Tuple[int, int]]:
"""
Find panel columns where consecutive columns meet the threshold and width constraint.
"""
height, width = dilated.shape
# Calculate black percentage for each column
col_black_percentage = np.sum(dilated == 0, axis=0) / height * 100
# Find all columns meeting threshold
black_cols = [x for x, p in enumerate(col_black_percentage) if p >= col_thresh]
# Forcefully include first and last column
if 0 not in black_cols:
black_cols.insert(0, 0)
if (width - 1) not in black_cols:
black_cols.append(width - 1)
# Group consecutive columns into gutters
col_gutters = []
if black_cols:
start_col = black_cols[0]
prev_col = black_cols[0]
for x in black_cols:
if x != start_col:
# Only extend if combined width meets min_width_ratio
combined_width = x - start_col + 1
if combined_width / width >= self.config.min_width_ratio:
prev_col = x
col_gutters.append((start_col, prev_col))
start_col = x
if start_col != prev_col:
col_gutters.append((start_col, prev_col)) # Add last gutter
print(f"β
Detected panel column gutters: {col_gutters}")
# β‘ Draw detected columns on a color copy
visual = cv2.cvtColor(dilated, cv2.COLOR_GRAY2BGR)
for (x1, x2) in col_gutters:
cv2.line(visual, (x1, 0), (x1, height), (255, 0, 0), thickness=5)
cv2.line(visual, (x2, 0), (x2, height), (0, 255, 255), thickness=5)
# Save visualization
output_path = f"{self.config.output_folder}/col_gutters_visualization.jpg"
cv2.imwrite(output_path, visual)
print(f"π Saved column gutter visualization: {output_path}")
return col_gutters
def _extract_panels_from_row(self, dilated: np.ndarray, y1: int, y2: int,
col_thresh: int) -> List[Tuple[int, int, int, int]]:
"""Extract panels from a single row."""
width = dilated.shape[1]
row_slice = dilated[y1:y2, :]
col_black_percentage = np.sum(row_slice == 0, axis=0) / (y2 - y1) * 100
# Find column gutters
col_gutters = []
in_gutter = False
for x, percent_black in enumerate(col_black_percentage):
if percent_black >= col_thresh and not in_gutter:
start_col = x
in_gutter = True
elif percent_black < col_thresh and in_gutter:
end_col = x
col_gutters.append((start_col, end_col))
in_gutter = False
# Convert gutters to panel columns
panel_cols = []
prev_end = 0
for start, end in col_gutters:
if start - prev_end > 10: # Minimum column width
panel_cols.append((prev_end, start))
prev_end = end
if width - prev_end > 10:
panel_cols.append((prev_end, width))
return [(x1, y1, x2, y2) for x1, x2 in panel_cols]
def _filter_panels_by_size(self, panels: List[Tuple[int, int, int, int]], width: int, height: int) -> List[Tuple[int, int, int, int]]:
"""Filter panels by size constraints."""
new_panel = []
for x1, y1, x2, y2 in panels:
w = x2 - x1 # Corrected
h = y2 - y1 # Corrected
if (
w >= self.config.min_width_ratio * width and
h >= self.config.min_height_ratio * height
):
new_panel.append((x1, y1, x2, y2))
return new_panel
def count_panel_files(self, folder_path: str) -> int:
"""
Count the number of files in a folder that start with 'panel_'.
Args:
folder_path: Path to the folder to search.
Returns:
Number of files starting with 'panel_'.
"""
if not os.path.exists(folder_path):
print(f"Folder does not exist: {folder_path}")
return 0
return len([
fname for fname in os.listdir(folder_path)
if fname.startswith("panel_") and os.path.isfile(os.path.join(folder_path, fname))
])
def load_existing_panels_from_folder(self, folder: str) -> List[Tuple[int, int, int, int]]:
"""
Parses filenames like 'panel_1_(1006, 176, 1757, 1085).jpg' and extracts coordinates.
"""
pattern = re.compile(r"panel_\d+_\((\d+), (\d+), (\d+), (\d+)\)\.jpg")
coords = []
for fname in os.listdir(folder):
match = pattern.match(fname)
if match:
coords.append(tuple(map(int, match.groups())))
return coords
def limit_coord(self, new_coord, existing_coords):
"""
Trim a new panel box from any side to completely avoid overlapping with existing panels.
Args:
new_coord: Tuple (x1, y1, x2, y2) representing the new panel box
existing_coords: List of tuples [(x1, y1, x2, y2), ...] representing existing panels
Returns:
Tuple (x1, y1, x2, y2) representing the trimmed panel box with no overlaps
"""
if not existing_coords:
return new_coord
x1, y1, x2, y2 = new_coord
# Ensure valid input coordinates
if x2 <= x1 or y2 <= y1:
return new_coord
# Keep trimming until no overlaps exist
current_box = (x1, y1, x2, y2)
for existing_box in existing_coords:
ex1, ey1, ex2, ey2 = existing_box
cx1, cy1, cx2, cy2 = current_box
# Check if current box overlaps with this existing box
if self.boxes_overlap(current_box, existing_box):
# Calculate possible trim options and their resulting box sizes
trim_options = []
# Option 1: Trim from left (move x1 right)
if cx1 < ex2 and cx2 > ex2:
new_x1 = ex2
if new_x1 < cx2: # Ensure valid box
area = (cx2 - new_x1) * (cy2 - cy1)
trim_options.append(('left', (new_x1, cy1, cx2, cy2), area))
# Option 2: Trim from right (move x2 left)
if cx2 > ex1 and cx1 < ex1:
new_x2 = ex1
if new_x2 > cx1: # Ensure valid box
area = (new_x2 - cx1) * (cy2 - cy1)
trim_options.append(('right', (cx1, cy1, new_x2, cy2), area))
# Option 3: Trim from top (move y1 down)
if cy1 < ey2 and cy2 > ey2:
new_y1 = ey2
if new_y1 < cy2: # Ensure valid box
area = (cx2 - cx1) * (cy2 - new_y1)
trim_options.append(('top', (cx1, new_y1, cx2, cy2), area))
# Option 4: Trim from bottom (move y2 up)
if cy2 > ey1 and cy1 < ey1:
new_y2 = ey1
if new_y2 > cy1: # Ensure valid box
area = (cx2 - cx1) * (new_y2 - cy1)
trim_options.append(('bottom', (cx1, cy1, cx2, new_y2), area))
# Choose the trim option that preserves the largest area
if trim_options:
# Sort by area (descending) to keep the largest possible box
trim_options.sort(key=lambda x: x[2], reverse=True)
best_option = trim_options[0]
current_box = best_option[1]
else:
# If no valid trim options, return minimal box
return (cx1, cy1, cx1 + 1, cy1 + 1)
return current_box
def boxes_overlap(self, box1, box2):
"""
Check if two boxes overlap.
Args:
box1, box2: Tuples (x1, y1, x2, y2)
Returns:
Boolean indicating if boxes overlap
"""
x1, y1, x2, y2 = box1
ex1, ey1, ex2, ey2 = box2
return not (x2 <= ex1 or x1 >= ex2 or y2 <= ey1 or y1 >= ey2)
def _save_panels(self, panels: List[Tuple[int, int, int, int]], original: np.ndarray, width: int, height: int) -> Tuple[List[np.ndarray], List[PanelData], List[str]]:
"""Save panel images and return panel data."""
original_image = cv2.imread(self.config.input_path)
visual_output = original.copy()
panel_images = []
panel_data = []
all_panel_path = []
panel_idx = self.count_panel_files(self.config.output_folder)
black_overlay_input = cv2.imread(self.config.black_overlay_input_path)
image_area = width * height
maybe_full_page_panel = None
# Load existing panels from disk
existing_coords = self.load_existing_panels_from_folder(self.config.output_folder)
for idx, (x1, y1, x2, y2) in enumerate(panels, 1):
# Extract panel image from black_overlay_input
panel_img = black_overlay_input[y1:y2, x1:x2]
# Check for mostly black/white
gray = cv2.cvtColor(panel_img, cv2.COLOR_BGR2GRAY)
total_pixels = gray.size
black_pixels = np.sum(gray < 30)
white_pixels = np.sum(gray > 240)
black_ratio = black_pixels / total_pixels
white_ratio = white_pixels / total_pixels
if black_ratio > 0.8:
print(f"β οΈ Skipping panel #{idx} β {round(black_ratio * 100, 2)}% black")
continue
elif white_ratio > 0.9:
print(f"β οΈ Skipping panel #{idx} β {round(white_ratio * 100, 2)}% white")
continue
else:
print(f"β
Panel #{idx} β {round(black_ratio * 100, 2)}% black, {round(white_ratio * 100, 2)}% white")
panel_area = (x2 - x1) * (y2 - y1)
if panel_area >= 0.9 * image_area:
print(f"β οΈ Panel #{idx} covers β₯90% of the image β marked for potential use only")
maybe_full_page_panel = (idx, (x1, y1, x2, y2))
continue
# Check for full containment in existing and current session
already_saved_coords = existing_coords + [ (pd.x_start, pd.y_start, pd.x_end, pd.y_end) for pd in panel_data ]
# 1. Skip if duplicate
is_duplicate, _ = remove_duplicate_boxes(already_saved_coords, (x1, y1, x2, y2))
if is_duplicate:
print(f"β οΈ Skipping panel #{idx} β fully contained in existing panel")
continue
# 2. Skip if this panel contains β₯1 other panels
contained_count = count_panels_inside((x1, y1, x2, y2), already_saved_coords, height, width)
if contained_count >= 1:
print(f"β οΈ Skipping panel #{idx} β contains {contained_count} other panels inside")
continue
x1, y1, x2, y2 = extend_boxes_to_image_border([(x1, y1, x2, y2)], [height, width], self.config.min_width_ratio, self.config.min_height_ratio)[0]
x1, y1, x2, y2 = self.limit_coord((x1, y1, x2, y2), already_saved_coords)
if not self._filter_panels_by_size(
[(x1, y1, x2, y2)], width, height
):
continue
# Save panel
panel_img = original_image[y1:y2, x1:x2]
panel_images.append(panel_img)
panel_info = PanelData.from_coordinates(x1, y1, x2, y2)
panel_data.append(panel_info)
panel_idx += 1
panel_path = f'{self.config.output_folder}/panel_{panel_idx}_{(x1, y1, x2, y2)}.jpg'
cv2.imwrite(str(panel_path), panel_img)
all_panel_path.append(panel_path)
cv2.rectangle(visual_output, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(visual_output, f"#{idx}", (x1+5, y1+25),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# If no valid panels and full-page backup exists
if not panel_images and maybe_full_page_panel and panel_idx == 0:
idx, (x1, y1, x2, y2) = maybe_full_page_panel
panel_img = original_image[y1:y2, x1:x2]
panel_images.append(panel_img)
panel_info = PanelData.from_coordinates(x1, y1, x2, y2)
panel_data.append(panel_info)
panel_idx += 1
panel_path = f'{self.config.output_folder}/panel_{panel_idx}_{(x1, y1, x2, y2)}.jpg'
cv2.imwrite(str(panel_path), panel_img)
all_panel_path.append(panel_path)
cv2.rectangle(visual_output, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(visual_output, f"#full", (x1+5, y1+25),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0, 0), 2)
print(f"β
Saved full-page panel as fallback")
# Save final visualization
visual_path = f'{self.config.output_folder}/panels_visualization.jpg'
cv2.imwrite(str(visual_path), visual_output)
print(f"β
Extracted {len(panel_images)} panels after filtering.")
return panel_images, panel_data, all_panel_path
|