Spaces:
Build error
Build error
File size: 14,217 Bytes
f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec d28110d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec bd1f76d f0c23ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import os
import numpy as np
from PIL import Image, ImageDraw
import imageio.v2 as imageio # Fix for imageio warning
from skimage.color import rgb2gray
from skimage.feature import canny
from skimage import measure
from scipy import ndimage as ndi
import re
from skimage.morphology import remove_small_holes
from .image_processor import ImageProcessor
import cv2
pattern = re.compile(r"panel_\d+_\((\d+), (\d+), (\d+), (\d+)\)\.jpg")
def extract_fully_white_panels(
original_image: np.ndarray,
segmentation_mask: np.ndarray,
output_dir: str = "panel_output",
debug_region_dir: str = "temp_dir/panel_debug_regions",
min_area_ratio: float = 0.05,
min_width_ratio: float = 0.05,
min_height_ratio: float = 0.05,
save_debug: bool = True
):
"""
Extract fully white panels from a segmented image.
Args:
original_image: Original RGB image as numpy array
segmentation_mask: Binary segmentation mask
output_dir: Directory to save extracted panels
debug_region_dir: Directory to save debug images
min_area_ratio: Minimum area ratio threshold
min_width_ratio: Minimum width ratio threshold
min_height_ratio: Minimum height ratio threshold
save_debug: Whether to save debug images
Returns:
List of saved panel file paths
"""
os.makedirs(output_dir, exist_ok=True)
if save_debug:
os.makedirs(debug_region_dir, exist_ok=True)
img_h, img_w = segmentation_mask.shape
image_area = img_h * img_w
orig_pil = Image.fromarray(original_image)
labeled_mask = measure.label(segmentation_mask)
regions = measure.regionprops(labeled_mask)
saved_panels = []
accepted_boxes = []
panel_idx = 0
for idx, region in enumerate(regions):
minr, minc, maxr, maxc = region.bbox
w = maxc - minc
h = maxr - minr
area = w * h
crop_box = (minc, minr, maxc, maxr)
crop_name_prefix = f"region_{idx+1}"
# Crops
cropped_img = orig_pil.crop(crop_box)
cropped_mask = segmentation_mask[minr:maxr, minc:maxc]
# Fix for Pillow warning: Remove mode parameter
mask_pil = Image.fromarray((cropped_mask * 255).astype('uint8'))
# 1. Threshold check
if (
w < min_width_ratio * img_w or
h < min_height_ratio * img_h
):
# if save_debug:
# cropped_img.save(os.path.join(debug_region_dir, f"{crop_name_prefix}_too_small_orig.jpg"))
# mask_pil.save(os.path.join(debug_region_dir, f"{crop_name_prefix}_too_small_mask.jpg"))
continue
# 2. Check if region is mostly white (allow small % of black)
black_pixel_count = np.count_nonzero(region.image == 0)
total_pixels = region.image.size
black_ratio = black_pixel_count / total_pixels
if black_ratio > 0.1: # Allow up to 1% black pixels
print(f"β Black ratio panel #{idx} β {round(black_ratio * 100, 2)}% black")
# Save debug info if desired
if save_debug:
debug_region_dir_specific = os.path.join(output_dir, f"region_{idx}_skipped_black_inside")
os.makedirs(debug_region_dir_specific, exist_ok=True)
# Save cropped mask
cropped_mask = segmentation_mask[minr:maxr, minc:maxc]
# Fix for Pillow warning: Remove mode parameter
mask_pil = Image.fromarray((cropped_mask * 255).astype("uint8"))
mask_pil.save(os.path.join(debug_region_dir_specific, f"region_{idx}_mask.jpg"))
# Highlight black pixels in red and zoom
highlighted = np.stack([cropped_mask]*3, axis=-1) * 255
highlighted[cropped_mask == 0] = [255, 0, 0]
highlighted_zoom = Image.fromarray(highlighted.astype('uint8')).resize(
(highlighted.shape[1]*4, highlighted.shape[0]*4), resample=Image.NEAREST
)
highlighted_zoom.save(os.path.join(debug_region_dir_specific, f"region_{idx}_highlight_black_zoomed.jpg"))
continue
# 3. Save valid panel with bbox coordinates in filename
bbox_str = f"({minc}, {minr}, {maxc}, {maxr})"
panel_idx = panel_idx + 1
panel_path = os.path.join(output_dir, f"panel_{panel_idx}_{bbox_str}.jpg")
cropped_img.save(panel_path)
saved_panels.append(panel_path)
accepted_boxes.append((minc, minr, maxc, maxr))
if save_debug:
cropped_img.save(os.path.join(debug_region_dir, f"{crop_name_prefix}_saved_orig.jpg"))
mask_pil.save(os.path.join(debug_region_dir, f"{crop_name_prefix}_saved_mask.jpg"))
# 4. Debug image with accepted boxes
if save_debug:
debug_img = orig_pil.copy()
draw = ImageDraw.Draw(debug_img)
for (x1, y1, x2, y2) in accepted_boxes:
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
debug_img.save(os.path.join(output_dir, "debug_all_saved_panels.jpg"))
return saved_panels
def get_region_count(binary_seg):
labeled_mask = measure.label(binary_seg)
regions = measure.regionprops(labeled_mask)
img_h, img_w = binary_seg.shape
image_area = img_h * img_w
count = 0
for idx, region in enumerate(regions):
minr, minc, maxr, maxc = region.bbox
w = maxc - minc
h = maxr - minr
area = w * h
if (
area < 0.05 * image_area or
w < 0.05 * img_w or
h < 0.05 * img_h
):
continue
count += 1
return count
def get_black_white_ratio(image_path, threshold=128):
"""
Calculates the ratio of black and white pixels in a binary image.
Parameters:
image_path (str): Path to the image file.
threshold (int): Threshold value for binarization (default: 128).
Returns:
dict: Dictionary with black_ratio, white_ratio, black_count, white_count, total_pixels.
"""
# Load image in grayscale
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
if img is None:
raise FileNotFoundError(f"Image not found: {image_path}")
# Convert to binary using the given threshold
_, binary = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)
total_pixels = binary.size
white_count = np.count_nonzero(binary == 255)
black_count = total_pixels - white_count
black_ratio = black_count / total_pixels
white_ratio = white_count / total_pixels
return {
"black_ratio": black_ratio,
"white_ratio": white_ratio,
"black_count": black_count,
"white_count": white_count,
"total_pixels": total_pixels
}
def create_segmentation_mask(image: np.ndarray, save_debug: bool = True) -> np.ndarray:
"""
Create segmentation mask from image using edge detection and hole filling.
Args:
image: Input RGB image as numpy array
save_debug: Whether to save intermediate processing steps
Returns:
Binary segmentation mask
"""
if save_debug:
os.makedirs("temp_dir/panel_debug_steps", exist_ok=True)
Image.fromarray(image).save("temp_dir/panel_debug_steps/step1_original.jpg")
# Convert to grayscale
grayscale = rgb2gray(image)
if save_debug:
gray_uint8 = (grayscale * 255).astype('uint8')
# Fix for Pillow warning: Remove mode parameter
Image.fromarray(gray_uint8).save("temp_dir/panel_debug_steps/step2_grayscale.jpg")
# Edge detection
edges = canny(grayscale)
edges_uint8 = (edges * 255).astype('uint8')
if save_debug:
Image.fromarray(edges_uint8).save("temp_dir/panel_debug_steps/step3_edges.jpg")
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
seg = cv2.dilate(edges_uint8, kernel, iterations=2)
seg = cv2.ximgproc.thinning(seg)
# Fill holes in edges
segmentation = ndi.binary_fill_holes(seg)
# Ensure it's a NumPy boolean or 0/1 array
binary_seg = segmentation.astype(np.uint8)
# Count white and black pixels
total_pixels = binary_seg.size
white_pixels = np.count_nonzero(binary_seg) # 1s
# Ratios
white_ratio = white_pixels / total_pixels
region_count = get_region_count(binary_seg)
if white_ratio > 0.8 or region_count == 1:
print(f"β οΈ white is maximum hence reverting to only binary_fill_holes")
# Fill holes in edges
segmentation = ndi.binary_fill_holes(edges)
# β
Remove small black clusters (holes in white regions)
segmentation_cleaned = remove_small_holes(segmentation, area_threshold=500) # adjust threshold as needed
if save_debug:
segmentation_uint8 = (segmentation_cleaned * 255).astype('uint8')
Image.fromarray(segmentation_uint8).save("temp_dir/panel_debug_steps/step4_segmentation_filled.jpg")
return segmentation_cleaned
def boxes_are_close(box1, box2, thresh):
# Horizontal overlap or near
horiz_close = (box1[2] >= box2[0] - thresh and box1[0] <= box2[2] + thresh)
# Vertical overlap or near
vert_close = (box1[3] >= box2[1] - thresh and box1[1] <= box2[3] + thresh)
return horiz_close and vert_close
def merge_close_panels(saved_panels, draw, distance_thresh=20):
"""Merge panels with close bounding boxes and fill them on draw object."""
# Step 1: Extract bounding boxes
boxes = []
for panel_path in saved_panels:
panel_name = os.path.basename(panel_path)
match = pattern.match(panel_name)
if match:
minc, minr, maxc, maxr = map(int, match.groups())
boxes.append([minc, minr, maxc, maxr])
# Step 2: Merge nearby boxes
merged = []
used = [False] * len(boxes)
for i in range(len(boxes)):
if used[i]:
continue
box1 = boxes[i]
merged_box = box1.copy()
for j in range(i + 1, len(boxes)):
if used[j]:
continue
box2 = boxes[j]
# Check if boxes are close (horizontal and vertical)
if boxes_are_close(box1, box2, distance_thresh):
# Merge boxes
merged_box = [
min(merged_box[0], box2[0]),
min(merged_box[1], box2[1]),
max(merged_box[2], box2[2]),
max(merged_box[3], box2[3])
]
used[j] = True
used[i] = True
merged.append(merged_box)
# Step 3: Fill merged boxes
for box in merged:
draw.rectangle(box, fill=(0, 0, 0))
def create_image_with_panels_removed(
original_image: np.ndarray,
segmentation_mask: np.ndarray,
output_folder: str,
output_path: str,
save_debug: True
) -> None:
"""
Create a version of the original image with detected panels blacked out.
Args:
original_image: Original RGB image as numpy array
segmentation_mask: Binary segmentation mask
output_path: Path to save the modified image
"""
# Get panel information
saved_panels = extract_fully_white_panels(
original_image=original_image,
segmentation_mask=segmentation_mask,
output_dir=output_folder,
debug_region_dir="temp_dir/panel_debug_regions",
save_debug=save_debug
)
# Create modified image
im_no_panels = Image.fromarray(original_image.copy())
draw = ImageDraw.Draw(im_no_panels)
# Get regions and black them out
# labeled_mask = measure.label(segmentation_mask)
# regions = measure.regionprops(labeled_mask)
# for panel_path in saved_panels:
# # Extract panel index from filename with bbox format
# panel_name = os.path.basename(panel_path)
# match = pattern.match(panel_name)
# minc, minr, maxc, maxr = map(int, match.groups())
# draw.rectangle([minc, minr, maxc, maxr], fill=(0, 0, 0))
merge_close_panels(saved_panels, draw, distance_thresh=25)
# Save the result
im_no_panels.save(output_path)
def main(output_folder, input_image_path, original_image_path):
"""Main execution function."""
# Load the input image
image = imageio.imread(input_image_path)
original_image = imageio.imread(original_image_path)
save_debug = True
# Create segmentation mask
segmentation_mask = create_segmentation_mask(image, save_debug=save_debug)
segmentation_mask_output_path = f"temp_dir/panel_debug_steps/step4_segmentation_filled.jpg"
pixel_ratios = get_black_white_ratio(segmentation_mask_output_path)
if pixel_ratios['black_ratio'] < 0.8:
print(f"β
black is less hence applying other features")
image_pros = ImageProcessor()
new_path = image_pros.thick_black(segmentation_mask_output_path, file_name="step5_thick.jpg", output_folder="temp_dir/panel_debug_steps")
new_path = image_pros.connect_horizontal_vertical_gaps(new_path, file_name="step6_continuity.jpg", output_folder="temp_dir/panel_debug_steps")
pixel_ratios = get_black_white_ratio(new_path)
if pixel_ratios['black_ratio'] < 0.8:
new_path = image_pros.thin_image_borders(new_path, file_name="step7_thin.jpg", output_folder="temp_dir/panel_debug_steps")
new_path = image_pros.remove_dangling_lines(new_path, file_name="step8_remove_dangling_lines.jpg", output_folder="temp_dir/panel_debug_steps")
new_path = image_pros.thick_black(new_path, file_name="step9_thick.jpg", output_folder="temp_dir/panel_debug_steps")
segmentation_mask = cv2.imread(new_path, cv2.IMREAD_GRAYSCALE)
pre_process_path = f"{output_folder}/00_original_with_panels_removed.jpg"
# Create image with panels removed
create_image_with_panels_removed(
original_image=original_image,
segmentation_mask=segmentation_mask,
output_folder=output_folder,
output_path=pre_process_path,
save_debug=save_debug
)
return pre_process_path
if __name__ == "__main__":
main('panel_output', 'test7.jpg', 'test7.jpg')
|