File size: 23,208 Bytes
d6be5fa
f6e2d8a
d6be5fa
82453cf
f6e2d8a
08fac87
 
 
 
 
84ccc57
 
f6e2d8a
 
 
 
 
 
 
 
82453cf
c70eaca
82453cf
 
c70eaca
d6be5fa
9ac80a4
 
 
 
 
b7a3bb3
 
 
9ac80a4
 
 
 
7320bf1
f6e2d8a
 
b42e964
f6e2d8a
 
b42e964
f6e2d8a
 
 
f8c72d3
08fac87
 
f8c72d3
 
 
08fac87
b42e964
f8c72d3
82453cf
f8c72d3
 
142bd00
f8c72d3
 
142bd00
f8c72d3
 
17ad0bb
 
 
 
 
 
 
 
 
 
f53e324
17ad0bb
 
 
 
 
 
 
 
 
 
f8c72d3
08fac87
 
f8c72d3
 
32c7e5a
 
9d0646a
32c7e5a
 
f8c72d3
7565b92
f8c72d3
08fac87
 
3b06efd
f8c72d3
3b06efd
 
08fac87
 
 
d6be5fa
503a0b6
7320bf1
 
 
 
503a0b6
08fac87
 
 
100d2c7
f8c72d3
82453cf
 
 
f8c72d3
84ccc57
f027363
 
 
08fac87
82453cf
08fac87
3472410
 
 
 
 
3b06efd
08fac87
 
 
 
 
 
 
 
 
 
 
 
 
17ad0bb
 
08fac87
 
 
 
 
 
 
 
 
 
 
 
 
03db0de
08fac87
 
 
 
 
 
03db0de
08fac87
 
 
 
 
 
 
 
 
 
b7a3bb3
08fac87
 
 
 
 
 
 
 
 
 
 
 
03db0de
08fac87
 
 
 
 
 
 
 
 
b7a3bb3
08fac87
 
 
 
 
03db0de
08fac87
3575a77
17ad0bb
08fac87
17ad0bb
08fac87
03db0de
08fac87
 
 
17ad0bb
08fac87
 
 
 
 
 
 
03db0de
 
08fac87
 
f8c72d3
08fac87
e4c1af6
f8c72d3
 
 
 
27b6f54
6f5111d
 
f8c72d3
 
08fac87
 
 
e4c1af6
6f5111d
e4c1af6
 
 
 
3b06efd
08fac87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404f284
 
 
 
 
 
 
 
 
 
 
 
08fac87
 
 
 
 
 
 
100d2c7
08fac87
32c7e5a
3b06efd
08fac87
27b6f54
 
 
100d2c7
27b6f54
08fac87
 
 
bf82de1
7565b92
bf82de1
 
 
 
 
08fac87
bf82de1
 
c70eaca
08fac87
 
 
bf82de1
 
08fac87
 
 
bf82de1
f53e324
03db0de
 
 
 
 
08fac87
 
 
 
 
 
 
3b06efd
08fac87
 
 
 
 
 
3472410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08fac87
03db0de
 
 
 
 
 
 
82453cf
03db0de
 
 
 
 
 
 
 
 
08fac87
 
 
 
 
 
03db0de
08fac87
 
404f284
84ccc57
08fac87
5f82b5a
100d2c7
08fac87
 
 
100d2c7
32c7e5a
03db0de
82453cf
03db0de
5f82b5a
08fac87
 
32c7e5a
03db0de
3b06efd
84ccc57
f6e2d8a
08fac87
 
03db0de
 
 
 
 
 
 
 
 
 
 
 
 
 
6f5111d
3b06efd
03db0de
08fac87
 
f53e324
 
 
 
8a36ac7
e4c1af6
f53e324
 
 
 
6f5111d
 
 
f53e324
 
 
 
 
 
 
555a40e
e00a4f0
f53e324
 
 
 
e4c1af6
 
 
 
82453cf
e4c1af6
 
 
 
03db0de
3472410
08fac87
 
 
 
 
100d2c7
f6e2d8a
3472410
 
 
bf82de1
08fac87
 
bf82de1
3472410
03db0de
100d2c7
03db0de
 
 
 
f53e324
 
 
 
3472410
03db0de
 
f53e324
 
 
 
3472410
f52b66d
03db0de
f53e324
e4c1af6
 
 
3472410
03db0de
 
3472410
 
 
 
 
 
 
08fac87
 
 
 
 
 
 
 
 
100d2c7
32c7e5a
08fac87
32c7e5a
08fac87
 
 
 
 
 
 
 
 
 
 
 
3472410
 
 
 
 
 
08fac87
 
3472410
 
 
08fac87
 
 
 
 
 
 
 
03db0de
 
 
 
100d2c7
f53e324
 
 
03db0de
503a0b6
 
 
 
 
 
f53e324
 
 
 
 
 
6f5111d
 
 
 
 
 
 
 
 
 
 
 
08fac87
 
3472410
 
 
f8c72d3
3472410
 
 
 
08fac87
 
3472410
08fac87
 
 
 
 
 
 
3472410
 
08fac87
 
 
 
503a0b6
 
 
 
 
 
 
 
f8c72d3
 
 
08fac87
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
from langgraph.checkpoint.memory import MemorySaver
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
from datetime import datetime
import gradio as gr
import spaces
import torch
import uuid
import ast
import os
import re

# Local modules
from main import GetChatModel, openai_model, model_id
from util import get_sources, get_start_end_months
from retriever import db_dir, embedding_model_id
from mods.tool_calling_llm import extract_think
from data import download_data, extract_data
from graph import BuildGraph

# Set environment variables
load_dotenv(dotenv_path=".env", override=True)
# Hide BM25S progress bars
os.environ["DISABLE_TQDM"] = "true"

# Download model snapshots from Hugging Face Hub
if torch.cuda.is_available():
    print(f"Downloading checkpoints for {model_id}...")
    ckpt_dir = snapshot_download(model_id, local_dir_use_symlinks=False)
    print(f"Using checkpoints from {ckpt_dir}")
    print(f"Downloading checkpoints for {embedding_model_id}...")
    embedding_ckpt_dir = snapshot_download(
        embedding_model_id, local_dir_use_symlinks=False
    )
    print(f"Using embedding checkpoints from {embedding_ckpt_dir}")
else:
    ckpt_dir = None
    embedding_ckpt_dir = None

# Download and extract data if data directory is not present
if not os.path.isdir(db_dir):
    print("Downloading data ... ", end="")
    download_data()
    print("done!")
    print("Extracting data ... ", end="")
    extract_data()
    print("done!")

# Global setting for search type
search_type = "hybrid"

# Global variables for LangChain graph: use dictionaries to store user-specific instances
# https://www.gradio.app/guides/state-in-blocks
graph_instances = {"local": {}, "remote": {}}


def cleanup_graph(request: gr.Request):
    timestamp = datetime.now().replace(microsecond=0).isoformat()
    if request.session_hash in graph_instances["local"]:
        del graph_instances["local"][request.session_hash]
        print(f"{timestamp} - Delete local graph for session {request.session_hash}")
    if request.session_hash in graph_instances["remote"]:
        del graph_instances["remote"][request.session_hash]
        print(f"{timestamp} - Delete remote graph for session {request.session_hash}")


def append_content(chunk_messages, history, thinking_about):
    """Append thinking and non-thinking content to chatbot history"""
    if chunk_messages.content:
        think_text, post_think = extract_think(chunk_messages.content)
        # Show thinking content in "metadata" message
        if think_text:
            history.append(
                gr.ChatMessage(
                    role="assistant",
                    content=think_text,
                    metadata={"title": f"🧠 Thinking about the {thinking_about}"},
                )
            )
            if not post_think and not chunk_messages.tool_calls:
                gr.Warning("Response may be incomplete", title="Thinking-only response")
        # Display non-thinking content
        if post_think:
            history.append(gr.ChatMessage(role="assistant", content=post_think))
    return history


def run_workflow(input, history, compute_mode, thread_id, session_hash):
    """The main function to run the chat workflow"""

    # Error if user tries to run local mode without GPU
    if compute_mode == "local":
        if not torch.cuda.is_available():
            raise gr.Error(
                "Local mode requires GPU.",
                print_exception=False,
            )

    # Get graph instance
    graph = graph_instances[compute_mode].get(session_hash)

    if graph is None:
        # Notify when we're loading the local model because it takes some time
        if compute_mode == "local":
            gr.Info(
                f"Please wait for the local model to load",
                title=f"Model loading...",
            )
        # Get the chat model and build the graph
        chat_model = GetChatModel(compute_mode, ckpt_dir)
        graph_builder = BuildGraph(
            chat_model,
            compute_mode,
            search_type,
            embedding_ckpt_dir=embedding_ckpt_dir,
        )
        # Compile the graph with an in-memory checkpointer
        memory = MemorySaver()
        graph = graph_builder.compile(checkpointer=memory)
        # Set global graph for compute mode
        graph_instances[compute_mode][session_hash] = graph
        # ISO 8601 timestamp with local timezone information without microsecond
        timestamp = datetime.now().replace(microsecond=0).isoformat()
        print(f"{timestamp} - Set {compute_mode} graph for session {session_hash}")
        # Notify when model finishes loading
        gr.Success(f"{compute_mode}", duration=4, title=f"Model loaded!")
    else:
        timestamp = datetime.now().replace(microsecond=0).isoformat()
        print(f"{timestamp} - Get {compute_mode} graph for session {session_hash}")

    # print(f"Using thread_id: {thread_id}")

    # Display the user input in the chatbot
    history.append(gr.ChatMessage(role="user", content=input))
    # Return the message history and empty lists for emails and citations texboxes
    yield history, [], []

    # Stream graph steps for a single input
    # https://langchain-ai.lang.chat/langgraph/reference/graphs/#langgraph.graph.state.CompiledStateGraph
    for step in graph.stream(
        # Appends the user input to the graph state
        {"messages": [{"role": "user", "content": input}]},
        config={"configurable": {"thread_id": thread_id}},
    ):

        # Get the node name and output chunk
        node, chunk = next(iter(step.items()))

        if node == "query":
            # Get the message (AIMessage class in LangChain)
            chunk_messages = chunk["messages"]
            # Append thinking and non-thinking messages (if present)
            history = append_content(chunk_messages, history, thinking_about="query")
            # Look for tool calls
            if chunk_messages.tool_calls:
                # Loop over tool calls
                for tool_call in chunk_messages.tool_calls:
                    # Show the tool call with arguments used
                    args = tool_call["args"]
                    content = args["search_query"] if "search_query" in args else ""
                    start_year = args["start_year"] if "start_year" in args else None
                    end_year = args["end_year"] if "end_year" in args else None
                    if start_year or end_year:
                        content = f"{content} ({start_year or ''} - {end_year or ''})"
                    if "months" in args:
                        content = f"{content} {args['months']}"
                    history.append(
                        gr.ChatMessage(
                            role="assistant",
                            content=content,
                            metadata={"title": f"πŸ” Running tool {tool_call['name']}"},
                        )
                    )
            yield history, [], []

        if node == "retrieve_emails":
            chunk_messages = chunk["messages"]
            # Loop over tool calls
            count = 0
            retrieved_emails = []
            for message in chunk_messages:
                count += 1
                # Get the retrieved emails as a list
                email_list = message.content.replace(
                    "### Retrieved Emails:\n\n", ""
                ).split("--- --- --- --- Next Email --- --- --- ---\n\n")
                # Get the list of source files (e.g. R-help/2024-December.txt) for retrieved emails
                month_list = [text.splitlines()[0] for text in email_list]
                # Format months (e.g. 2024-December) into text
                month_text = (
                    ", ".join(month_list).replace("R-help/", "").replace(".txt", "")
                )
                # Get the number of retrieved emails
                n_emails = len(email_list)
                title = f"πŸ›’ Retrieved {n_emails} emails"
                if email_list[0] == "### No emails were retrieved":
                    title = "❌ Retrieved 0 emails"
                history.append(
                    gr.ChatMessage(
                        role="assistant",
                        content=month_text,
                        metadata={"title": title},
                    )
                )
                # Format the retrieved emails with Tool Call heading
                retrieved_emails.append(
                    message.content.replace(
                        "### Retrieved Emails:\n\n",
                        f"### ### ### ### Tool Call {count} ### ### ### ###\n\n",
                    )
                )
            # Combine all the Tool Call results
            retrieved_emails = "\n\n".join(retrieved_emails)
            yield history, retrieved_emails, []

        if node == "answer":
            # Append messages (thinking and non-thinking) to history
            chunk_messages = chunk["messages"]
            history = append_content(chunk_messages, history, thinking_about="answer")
            # None is used for no change to the retrieved emails textbox
            yield history, None, []

        if node == "answer_with_citations":
            # Parse the message for the answer and citations
            chunk_messages = chunk["messages"][0]
            try:
                answer, citations = ast.literal_eval(chunk_messages.content)
            except:
                # In case we got an answer without citations
                answer = chunk_messages.content
                citations = None

            history.append(gr.ChatMessage(role="assistant", content=answer))
            yield history, None, citations


def to_workflow(request: gr.Request, *args):
    """Wrapper function to call function with or without @spaces.GPU"""
    input = args[0]
    compute_mode = args[2]
    # Add session_hash to arguments
    new_args = args + (request.session_hash,)
    if compute_mode == "local":
        # Call the workflow function with the @spaces.GPU decorator
        for value in run_workflow_local(*new_args):
            yield value
    if compute_mode == "remote":
        for value in run_workflow_remote(*new_args):
            yield value


@spaces.GPU(duration=100)
def run_workflow_local(*args):
    for value in run_workflow(*args):
        yield value


def run_workflow_remote(*args):
    for value in run_workflow(*args):
        yield value


# Custom CSS for bottom alignment
css = """
.row-container {
    display: flex;
    align-items: flex-end; /* Align components at the bottom */
    gap: 10px; /* Add spacing between components */
}
"""

with gr.Blocks(
    title="R-help-chat",
    # Noto Color Emoji gets a nice-looking Unicode Character β€œπŸ‡·β€ (U+1F1F7) on Chrome
    theme=gr.themes.Soft(
        font=[
            "ui-sans-serif",
            "system-ui",
            "sans-serif",
            "Apple Color Emoji",
            "Segoe UI Emoji",
            "Segoe UI Symbol",
            "Noto Color Emoji",
        ]
    ),
    css=css,
) as demo:

    # -----------------
    # Define components
    # -----------------

    compute_mode = gr.Radio(
        choices=[
            "local",
            "remote",
        ],
        # Default to remote because it provides a better first impression for most people
        # value=("local" if torch.cuda.is_available() else "remote"),
        value="remote",
        label="Compute Mode",
        info="NOTE: remote mode **does not** use ZeroGPU",
        render=False,
    )

    loading_data = gr.Textbox(
        "Please wait for the email database to be downloaded and extracted.",
        max_lines=0,
        label="Loading Data",
        visible=False,
        render=False,
    )
    downloading = gr.Textbox(
        max_lines=1,
        label="Downloading Data",
        visible=False,
        render=False,
    )
    extracting = gr.Textbox(
        max_lines=1,
        label="Extracting Data",
        visible=False,
        render=False,
    )
    missing_data = gr.Textbox(
        value="Email database is missing. Try reloading this page. If the problem persists, please contact the maintainer.",
        lines=1,
        label="Error downloading or extracting data",
        visible=False,
        render=False,
    )
    chatbot = gr.Chatbot(
        type="messages",
        show_label=False,
        avatar_images=(
            None,
            (
                "images/cloud.png"
                if compute_mode.value == "remote"
                else "images/chip.png"
            ),
        ),
        show_copy_all_button=True,
        render=False,
    )
    # Modified from gradio/chat_interface.py
    input = gr.Textbox(
        show_label=False,
        label="Message",
        placeholder="Type a message...",
        scale=7,
        autofocus=True,
        submit_btn=True,
        render=False,
    )
    emails_textbox = gr.Textbox(
        label="Retrieved Emails",
        info="Tip: Look for 'Tool Call' and 'Next Email' separators. Quoted lines (starting with '>') are removed before indexing.",
        lines=10,
        visible=False,
        render=False,
    )
    citations_textbox = gr.Textbox(
        label="Citations",
        lines=2,
        visible=False,
        render=False,
    )

    # ------------
    # Set up state
    # ------------

    def generate_thread_id():
        """Generate a new thread ID"""
        thread_id = uuid.uuid4()
        # print(f"Generated thread_id: {thread_id}")
        return thread_id

    # Define thread_id variable
    thread_id = gr.State(generate_thread_id())

    # Define states for the output textboxes
    retrieved_emails = gr.State([])
    citations_text = gr.State([])

    # ------------------
    # Make the interface
    # ------------------

    def get_intro_text():
        intro = f"""<!-- # πŸ€– R-help-chat -->
            <!-- Get AI-powered answers about R programming backed by email retrieval. -->
            ## πŸ‡·πŸ€πŸ’¬ R-help-chat
            
            **Chat with the [R-help mailing list archives](https://stat.ethz.ch/pipermail/r-help/).**
            An LLM turns your question into a search query, including year ranges and months, and generates an answer from the retrieved emails.
            You can ask follow-up questions with the chat history as context.
            ➑️ To clear the history and start a new chat, press the πŸ—‘οΈ clear button.
            **_Answers may be incorrect._**
            """
        return intro

    def get_status_text(compute_mode):
        if compute_mode == "remote":
            status_text = f"""
            🌐 Now in **remote** mode, using the OpenAI API<br>
            ⚠️ **_Privacy Notice_**: Data sharing with OpenAI is enabled<br>
            ✨ text-embedding-3-small and {openai_model}<br>
            🏠 See the project's [GitHub repository](https://github.com/jedick/R-help-chat)
            """
        if compute_mode == "local":
            status_text = f"""
            πŸ“ Now in **local** mode, using ZeroGPU hardware<br>
            βŒ› Response time is about one minute<br>
            ✨ [{embedding_model_id.split("/")[-1]}](https://huggingface.co/{embedding_model_id}) and [{model_id.split("/")[-1]}](https://huggingface.co/{model_id})<br>
            🏠 See the project's [GitHub repository](https://github.com/jedick/R-help-chat)
            """
        return status_text

    def get_info_text():
        try:
            # Get source files for each email and start and end months from database
            sources = get_sources()
            start, end = get_start_end_months(sources)
        except:
            # If database isn't ready, put in empty values
            sources = []
            start = None
            end = None
        info_text = f"""
            **Database:** {len(sources)} emails from {start} to {end}.
            **Features:** RAG, today's date, hybrid search (dense+sparse), multiple retrievals, citations output (remote), chat memory.
            **Tech:** LangChain + Hugging Face + Gradio; ChromaDB and BM25S-based retrievers.<br>
            """
        return info_text

    def get_example_questions(compute_mode, as_dataset=True):
        """Get example questions based on compute mode"""
        questions = [
            # "What is today's date?",
            "Summarize emails from the most recent two months",
            "Show me code examples using plotmath",
            "When was has.HLC mentioned?",
            "Who reported installation problems in 2023-2024?",
        ]

        ## Remove "/think" from questions in remote mode
        # if compute_mode == "remote":
        #     questions = [q.replace(" /think", "") for q in questions]

        # cf. https://github.com/gradio-app/gradio/pull/8745 for updating examples
        return gr.Dataset(samples=[[q] for q in questions]) if as_dataset else questions

    def get_multi_tool_questions(compute_mode, as_dataset=True):
        """Get multi-tool example questions based on compute mode"""
        questions = [
            "Differences between lapply and for loops",
            "Discuss pipe operator usage in 2022, 2023, and 2024",
        ]

        return gr.Dataset(samples=[[q] for q in questions]) if as_dataset else questions

    def get_multi_turn_questions(compute_mode, as_dataset=True):
        """Get multi-turn example questions based on compute mode"""
        questions = [
            "Lookup emails that reference bugs.r-project.org in 2025",
            "Did the authors you cited report bugs before 2025?",
        ]

        return gr.Dataset(samples=[[q] for q in questions]) if as_dataset else questions

    with gr.Row():
        # Left column: Intro, Compute, Chat
        with gr.Column(scale=2):
            with gr.Row(elem_classes=["row-container"]):
                with gr.Column(scale=2):
                    intro = gr.Markdown(get_intro_text())
                with gr.Column(scale=1):
                    compute_mode.render()
            with gr.Group() as chat_interface:
                chatbot.render()
                input.render()
            # Render textboxes for data loading progress
            loading_data.render()
            downloading.render()
            extracting.render()
            missing_data.render()
        # Right column: Info, Examples
        with gr.Column(scale=1):
            status = gr.Markdown(get_status_text(compute_mode.value))
            with gr.Accordion("ℹ️ More Info", open=False):
                info = gr.Markdown(get_info_text())
            with gr.Accordion("πŸ’‘ Examples", open=True):
                # Add some helpful examples
                example_questions = gr.Examples(
                    examples=get_example_questions(
                        compute_mode.value, as_dataset=False
                    ),
                    inputs=[input],
                    label="Click an example to fill the message box",
                )
                multi_tool_questions = gr.Examples(
                    examples=get_multi_tool_questions(
                        compute_mode.value, as_dataset=False
                    ),
                    inputs=[input],
                    label="Multiple retrievals",
                )
                multi_turn_questions = gr.Examples(
                    examples=get_multi_turn_questions(
                        compute_mode.value, as_dataset=False
                    ),
                    inputs=[input],
                    label="Asking follow-up questions",
                )

    # Bottom row: retrieved emails and citations
    with gr.Row():
        with gr.Column(scale=2):
            emails_textbox.render()
        with gr.Column(scale=1):
            citations_textbox.render()

    # -------------
    # App functions
    # -------------

    def value(value):
        """Return updated value for a component"""
        return gr.update(value=value)

    def set_avatar(compute_mode):
        if compute_mode == "remote":
            image_file = "images/cloud.png"
        if compute_mode == "local":
            image_file = "images/chip.png"
        return gr.update(
            avatar_images=(
                None,
                image_file,
            ),
        )

    def change_visibility(visible):
        """Return updated visibility state for a component"""
        return gr.update(visible=visible)

    def update_textbox(content, textbox):
        if content is None:
            # Keep the content of the textbox unchanged
            return textbox, change_visibility(True)
        elif content == []:
            # Blank out the textbox
            return "", change_visibility(False)
        else:
            # Display the content in the textbox
            return content, change_visibility(True)

    # --------------
    # Event handlers
    # --------------

    # Start a new thread when the user presses the clear (trash) button
    # https://github.com/gradio-app/gradio/issues/9722
    chatbot.clear(generate_thread_id, outputs=[thread_id], api_name=False)

    def clear_component(component):
        """Return cleared component"""
        return component.clear()

    compute_mode.change(
        # Start a new thread
        generate_thread_id,
        outputs=[thread_id],
        api_name=False,
    ).then(
        # Focus textbox by updating the textbox with the current value
        lambda x: gr.update(value=x),
        [input],
        [input],
        api_name=False,
    ).then(
        # Change the app status text
        get_status_text,
        [compute_mode],
        [status],
        api_name=False,
    ).then(
        # Clear the chatbot history
        clear_component,
        [chatbot],
        [chatbot],
        api_name=False,
    ).then(
        # Change the chatbot avatar
        set_avatar,
        [compute_mode],
        [chatbot],
        api_name=False,
    )

    input.submit(
        # Submit input to the chatbot
        to_workflow,
        [input, chatbot, compute_mode, thread_id],
        [chatbot, retrieved_emails, citations_text],
        api_name=False,
    )

    retrieved_emails.change(
        # Update the emails textbox
        update_textbox,
        [retrieved_emails, emails_textbox],
        [emails_textbox, emails_textbox],
        api_name=False,
    )

    citations_text.change(
        # Update the citations textbox
        update_textbox,
        [citations_text, citations_textbox],
        [citations_textbox, citations_textbox],
        api_name=False,
    )

    chatbot.clear(
        # Focus textbox when the chatbot is cleared
        lambda x: gr.update(value=x),
        [input],
        [input],
        api_name=False,
    )

    # Clean up graph instances when page is closed/refreshed
    demo.unload(cleanup_graph)


if __name__ == "__main__":

    # Set allowed_paths to serve chatbot avatar images
    current_directory = os.getcwd()
    allowed_paths = [current_directory + "/images"]
    # Launch the Gradio app
    demo.launch(allowed_paths=allowed_paths)