File size: 28,762 Bytes
142bd00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
from ast import Tuple
from pathlib import Path
import re
from typing import Any, Dict, List, Union, Callable, NamedTuple
import typing

from bm25s.utils import json_functions

try:
    # To hide progress bars, don't import tqdm
    # from tqdm.auto import tqdm
    raise ImportError("Not importing tqdm")
except ImportError:

    def tqdm(iterable, *args, **kwargs):
        return iterable


from bm25s.stopwords import (
    STOPWORDS_EN,
    STOPWORDS_EN_PLUS,
    STOPWORDS_GERMAN,
    STOPWORDS_DUTCH,
    STOPWORDS_FRENCH,
    STOPWORDS_SPANISH,
    STOPWORDS_PORTUGUESE,
    STOPWORDS_ITALIAN,
    STOPWORDS_RUSSIAN,
    STOPWORDS_SWEDISH,
    STOPWORDS_NORWEGIAN,
    STOPWORDS_CHINESE,
)


class Tokenized(NamedTuple):
    """
    NamedTuple with two fields: ids and vocab. The ids field is a list of list of token IDs
    for each document. The vocab field is a dictionary mapping tokens to their index in the
    vocabulary.
    """

    ids: List[List[int]]
    vocab: Dict[str, int]

    def __repr__(self):
        """
        Returns:
            a string representation of the class.
            for example, for a small corpus, it would be something like:
            ----
            Tokenized(
              "ids": [
                0: [0, 1, 2, 3]
              ],
              "vocab": [
                '': 4
                'cat': 0
                'feline': 1
                'likes': 2
                'purr': 3
              ],
            )
            ----

            and, for example, for a large corpus, it would be something like:
            ----
            Tokenized(
              "ids": [
                0: [0, 1, 2, 3]
                1: [4, 5, 6, 7, 8, 9]
                2: [10, 11, 12, 13, 14]
                3: [15, 16, 17, 18, 19]
                4: [0, 1, 2, 3, 0, 20, 21, 22, 23, 24, ...]
                5: [0, 1, 2, 3]
                6: [4, 5, 6, 7, 8, 9]
                7: [10, 11, 12, 13, 14]
                8: [15, 16, 17, 18, 19]
                9: [0, 1, 2, 3, 0, 20, 21, 22, 23, 24, ...]
                ... (total 500000 docs)
              ],
              "vocab": [
                '': 29
                'animal': 12
                'beautiful': 11
                'best': 6
                'bird': 10
                'can': 13
                'carefully': 27
                'casually': 28
                'cat': 0
                'creature': 16
                ... (total 30 tokens)
              ],
            )
            ----
        """
        lines_print_max_num = 10
        single_doc_print_max_len = 10
        lines = ["Tokenized(", '  "ids": [']
        for doc_idx, document in enumerate(self.ids[:lines_print_max_num]):
            preview = document[:single_doc_print_max_len]
            if len(document) > single_doc_print_max_len:
                preview += ["..."]
            lines.append(f"    {doc_idx}: [{', '.join([str(x) for x in preview])}]")
        if len(self.ids) > lines_print_max_num:
            lines.append(f"    ... (total {len(self.ids)} docs)")
        lines.append(f'  ],\n  "vocab": [')
        vocab_keys = sorted(list(self.vocab.keys()))
        for vocab_idx, key_ in enumerate(vocab_keys[:lines_print_max_num]):
            val_ = self.vocab[key_]
            lines.append(f"    {key_!r}: {val_}")
        if len(list(vocab_keys)) > 10:
            lines.append(f"    ... (total {len(vocab_keys)} tokens)")
        lines.append("  ],\n)")
        return "\n".join(lines)


class Tokenizer:
    """
    Tokenizer class for tokenizing a list of strings and converting them to token IDs.

    Parameters
    ----------
    lower : bool, optional
        Whether to convert the text to lowercase before tokenization

    splitter : Union[str, Callable], optional
        If a string is provided, the tokenizer will interpret it as a regex pattern,
        and use the `re.compile` function to compile the pattern and use the `findall` method
        to split the text. If a callable is provided, the tokenizer will use the callable to
        split the text. The callable should take a string as input and return a list of strings.

    stopwords : Union[str, List[str]], optional
        The list of stopwords to remove from the text. If "english" or "en" is provided,
        the function will use the default English stopwords. If None or False is provided,
        no stopwords will be removed. If a list of strings is provided, the tokenizer will
        use the list of strings as stopwords.

    stemmer : Callable, optional
        The stemmer to use for stemming the tokens. It is recommended
        to use the PyStemmer library for stemming, but you can also any callable that
        takes a list of strings and returns a list of strings.
    """

    def __init__(
        self,
        lower: bool = True,
        splitter: Union[str, Callable] = r"(?u)\b\w\w+\b",
        stopwords: Union[str, List[str]] = "english",
        stemmer: Callable = None,  # type: ignore
    ):
        self.lower = lower
        if isinstance(splitter, str):
            splitter = re.compile(splitter).findall
        if not callable(splitter):
            raise ValueError("splitter must be a callable or a regex pattern.")

        # Exception handling for stemmer when we are using PyStemmer, which has a stemWords method
        if hasattr(stemmer, "stemWord"):
            stemmer = stemmer.stemWord
        if not callable(stemmer) and stemmer is not None:
            raise ValueError("stemmer must be callable or have a `stemWord` method.")

        self.stopwords = _infer_stopwords(stopwords)
        self.splitter = splitter
        self.stemmer = stemmer

        self.reset_vocab()

    def reset_vocab(self):
        """
        Reset the vocabulary dictionaries to empty dictionaries, allowing you to
        tokenize a new set of texts without reusing the previous vocabulary.
        """
        self.word_to_stem = {}  # word -> stemmed word, e.g. "apple" -> "appl"
        self.stem_to_sid = {}  # stem -> stemmed id, e.g. "appl" -> 0
        # word -> {stemmed, unstemmed} id, e.g. "apple" -> 0 (appl) or "apple" -> 2 (apple)
        self.word_to_id = {}

    def save_vocab(self, save_dir: str, vocab_name: str = "vocab.tokenizer.json"):
        """
        Save the vocabulary dictionaries to a file. The file is saved in JSON format.

        Parameters
        ----------
        save_dir : str
            The directory where the vocabulary file is saved.

        vocab_name : str, optional
            The name of the vocabulary file. Default is "vocab.tokenizer.json". Make
            sure to not use the same name as the vocab.index.json file saved by the BM25
            model, as it will overwrite the vocab.index.json file and cause errors.
        """
        save_dir: Path = Path(save_dir)
        path = save_dir / vocab_name

        save_dir.mkdir(parents=True, exist_ok=True)
        with open(path, "w", encoding="utf-8") as f:
            d = {
                "word_to_stem": self.word_to_stem,
                "stem_to_sid": self.stem_to_sid,
                "word_to_id": self.word_to_id,
            }
            f.write(json_functions.dumps(d, ensure_ascii=False))

    def load_vocab(self, save_dir: str, vocab_name: str = "vocab.tokenizer.json"):
        """
        Load the vocabulary dictionaries from a file. The file should be saved in JSON format.

        Parameters
        ----------
        save_dir : str
            The directory where the vocabulary file is saved.

        vocab_name : str, optional
            The name of the vocabulary file.

        Note
        ----
        The vocabulary file should be saved in JSON format, with the following keys:
        - word_to_stem: a dictionary mapping words to their stemmed words
        - stem_to_sid: a dictionary mapping stemmed words to their stemmed IDs
        - word_to_id: a dictionary mapping words to their word
        """
        path = Path(save_dir) / vocab_name

        with open(path, "r", encoding="utf-8") as f:
            d = json_functions.loads(f.read())
            self.word_to_stem = d["word_to_stem"]
            self.stem_to_sid = d["stem_to_sid"]
            self.word_to_id = d["word_to_id"]

    def save_stopwords(
        self, save_dir: str, stopwords_name: str = "stopwords.tokenizer.json"
    ):
        """
        Save the stopwords to a file. The file is saved in JSON format.

        Parameters
        ----------
        save_dir : str
            The directory where the stopwords file is saved.

        stopwords_name : str, optional
            The name of the stopwords file. Default is "stopwords.tokenizer.json".
        """
        save_dir: Path = Path(save_dir)
        path = save_dir / stopwords_name

        save_dir.mkdir(parents=True, exist_ok=True)
        with open(path, "w") as f:
            f.write(json_functions.dumps(self.stopwords))

    def load_stopwords(
        self, save_dir: str, stopwords_name: str = "stopwords.tokenizer.json"
    ):
        """
        Load the stopwords from a file. The file should be saved in JSON format.

        Parameters
        ----------
        save_dir : str
            The directory where the stopwords file is saved.

        stopwords_name : str, optional
            The name of the stopwords file.
        """
        path = Path(save_dir) / stopwords_name

        with open(path, "r") as f:
            self.stopwords = json_functions.loads(f.read())

    def streaming_tokenize(
        self,
        texts: List[str],
        update_vocab: Union[bool, str] = True,
        allow_empty: bool = True,
    ):
        """
        Tokenize a list of strings and return a generator of token IDs.

        Parameters
        ----------
        texts : List[str]
            A list of strings to tokenize.

        update_vocab : bool, optional
            Whether to update the vocabulary dictionary with the new tokens. If true,
            the different dictionaries making up the vocabulary will be updated with the
            new tokens. If False, the function will not update the vocabulary. Unless you have
            a stemmer and the stemmed word is in the stem_to_sid dictionary.  If "never",
            the function will never update the vocabulary, even if the stemmed word is in
            the stem_to_sid dictionary. Note that update_vocab="if_empty" is not supported
            in this method, only in the `tokenize` method.

        allow_empty : bool, optional
            Whether to allow the splitter to return an empty string. If False, the splitter
            will return an empty list, which may cause issues if the tokenizer is not expecting
            an empty list. If True, the splitter will return a list with a single empty string.
        """
        stopwords_set = set(self.stopwords) if self.stopwords is not None else None
        using_stopwords = stopwords_set is not None
        using_stemmer = self.stemmer is not None

        if allow_empty is True and update_vocab is True and "" not in self.word_to_id:
            idx = max(self.word_to_id.values(), default=-1) + 1
            self.word_to_id[""] = idx

            if using_stemmer:
                if "" not in self.word_to_stem:
                    self.word_to_stem[""] = ""
                if "" not in self.stem_to_sid:
                    self.stem_to_sid[""] = idx

        for text in texts:
            if self.lower:
                text = text.lower()

            splitted_words = list(self.splitter(text))

            if allow_empty is True and len(splitted_words) == 0:
                splitted_words = [""]

            doc_ids = []
            for word in splitted_words:
                if word in self.word_to_id:
                    wid = self.word_to_id[word]
                    doc_ids.append(wid)
                    continue

                if using_stopwords and word in stopwords_set:
                    continue

                # We are always updating the word_to_stem mapping since even new
                # words that we have never seen before can be stemmed, with the
                # possibility that the stemmed ID is already in the stem_to_sid
                if using_stemmer:
                    if word in self.word_to_stem:
                        stem = self.word_to_stem[word]
                    else:
                        stem = self.stemmer(word)
                        self.word_to_stem[word] = stem

                    # if the stem is already in the stem_to_sid, we can just use the ID
                    # and update the word_to_id dictionary, unless update_vocab is "never"
                    # in which case we skip this word
                    if update_vocab != "never" and stem in self.stem_to_sid:
                        sid = self.stem_to_sid[stem]
                        self.word_to_id[word] = sid
                        doc_ids.append(sid)

                    elif update_vocab is True:
                        sid = len(self.stem_to_sid)
                        self.stem_to_sid[stem] = sid
                        self.word_to_id[word] = sid
                        doc_ids.append(sid)
                else:
                    # if we are not using a stemmer, we can just update the word_to_id
                    # directly rather than going through the stem_to_sid dictionary
                    if update_vocab is True and word not in self.word_to_id:
                        wid = len(self.word_to_id)
                        self.word_to_id[word] = wid
                        doc_ids.append(wid)

            if len(doc_ids) == 0 and allow_empty is True and "" in self.word_to_id:
                doc_ids = [self.word_to_id[""]]

            yield doc_ids

    def tokenize(
        self,
        texts: List[str],
        update_vocab: Union[bool, str] = "if_empty",
        leave_progress: bool = False,
        show_progress: bool = True,
        length: Union[int, None] = None,
        return_as: str = "ids",
        allow_empty: bool = True,
    ) -> Union[List[List[int]], List[List[str]], typing.Generator, Tokenized]:
        """
        Tokenize a list of strings and return the token IDs.

        Parameters
        ----------
        texts : List[str]
            A list of strings to tokenize.

        update_vocab : bool, optional
            Whether to update the vocabulary dictionary with the new tokens. If true,
            the different dictionaries making up the vocabulary will be updated with the
            new tokens. If False, the vocabulary will not be updated unless you have a stemmer
            and the stemmed word is in the stem_to_sid dictionary. If update_vocab="if_empty",
            the function will only update the vocabulary if it is empty, i.e. when the
            function is called for the first time, or if the vocabulary has been reset with
            the `reset_vocab` method. If update_vocab="never", the "word_to_id" will never
            be updated, even if the stemmed word is in the stem_to_sid dictionary. Only use
            this if you are sure that the stemmed words are already in the stem_to_sid dictionary.

        leave_progress : bool, optional
            Whether to leave the progress bar after completion. If False, the progress bar
            will disappear after completion. If True, the progress bar will stay on the screen.

        show_progress : bool, optional
            Whether to show the progress bar for tokenization. If False, the function will
            not show the progress bar. If True, it will use tqdm.auto to show the progress bar.

        length : int, optional
            The length of the texts. If None, the function will call `len(texts)` to get the length.
            This is mainly used when `texts` is a generator or a stream instead of a list, in which case
            `len(texts)` will raise a TypeError, and you need to provide the length manually.

        return_as : str, optional
            The type of object to return by this function.
            If "tuple", this returns a Tokenized namedtuple, which contains the token IDs
            and the vocab dictionary.
            If "string", this return a list of lists of strings, each string being a token.
            If "ids", this return a list of lists of integers corresponding to the token IDs,
            or stemmed IDs if a stemmer is used.

        allow_empty : bool, optional
            Whether to allow the splitter to return an empty string. If False, the splitter
            will return an empty list, which may cause issues if the tokenizer is not expecting
            an empty list. If True, the splitter will return a list with a single empty string.

        Returns
        -------
        List[List[int]] or Generator[List[int]] or List[List[str]] or Tokenized object
            If `return_as="stream"`, a Generator[List[int]] is returned, each integer being a token ID.
            If `return_as="ids"`, a List[List[int]] is returned, each integer being a token ID.
            If `return_as="string"`, a List[List[str]] is returned, each string being a token.
            If `return_as="tuple"`, a Tokenized namedtuple is returned, with names `ids` and `vocab`.
        """
        incorrect_return_error = (
            "return_as must be either 'tuple', 'string', 'ids', or 'stream'."
        )
        incorrect_update_vocab_error = (
            "update_vocab must be either True, False, 'if_empty', or 'never'."
        )
        if return_as not in ["tuple", "string", "ids", "stream"]:
            raise ValueError(incorrect_return_error)

        if update_vocab not in [True, False, "if_empty", "never"]:
            raise ValueError(incorrect_update_vocab_error)

        if update_vocab == "if_empty":
            update_vocab = len(self.word_to_id) == 0

        stream_fn = self.streaming_tokenize(
            texts=texts, update_vocab=update_vocab, allow_empty=allow_empty
        )

        if return_as == "stream":
            return stream_fn

        if length is None:
            length = len(texts)

        tqdm_kwargs = dict(
            desc="Tokenize texts",
            leave=leave_progress,
            disable=not show_progress,
            total=length,
        )

        token_ids = []
        for doc_ids in tqdm(stream_fn, **tqdm_kwargs):
            token_ids.append(doc_ids)

        if return_as == "ids":
            return token_ids
        elif return_as == "string":
            return self.decode(token_ids)
        elif return_as == "tuple":
            return self.to_tokenized_tuple(token_ids)
        else:
            raise ValueError(incorrect_return_error)

    def get_vocab_dict(self) -> Dict[str, Any]:
        if self.stemmer is None:
            # if we are not using a stemmer, we return the word_to_id dictionary
            # which maps the words to the word IDs
            return self.word_to_id
        else:
            # if we are using a stemmer, we return the stem_to_sid dictionary,
            # which we will use to map the stemmed words to the stemmed IDs
            return self.stem_to_sid

    def to_tokenized_tuple(self, docs: List[List[int]]) -> Tokenized:
        """
        Convert the token IDs to a Tokenized namedtuple, which contains the word IDs, or the stemmed IDs
        if a stemmer is used. The Tokenized namedtuple contains two fields: ids and vocab. The latter
        is a dictionary mapping the token IDs to the tokens, or a dictionary mapping the stemmed IDs to
        the stemmed tokens (if a stemmer is used).
        """
        return Tokenized(ids=docs, vocab=self.get_vocab_dict())

    def decode(self, docs: List[List[int]]) -> List[List[str]]:
        """
        Convert word IDs (or stemmed IDs if a stemmer is used) back to strings using the vocab dictionary,
        which is a dictionary mapping the word IDs to the words or a dictionary mapping the stemmed IDs
        to the stemmed words (if a stemmer is used).

        Parameters
        ----------
        docs : List[List[int]]
            A list of lists of word IDs or stemmed IDs.

        Returns
        -------
        List[List[str]]
            A list of lists of strings, each string being a word or a stemmed word if a stemmer is used.
        """
        vocab = self.get_vocab_dict()
        reverse_vocab = {v: k for k, v in vocab.items()}
        return [[reverse_vocab[token_id] for token_id in doc] for doc in docs]


def convert_tokenized_to_string_list(tokenized: Tokenized) -> List[List[str]]:
    """
    Convert the token IDs back to strings using the vocab dictionary.
    """
    reverse_vocab = {v: k for k, v in tokenized.vocab.items()}

    return [
        [reverse_vocab[token_id] for token_id in doc_ids] for doc_ids in tokenized.ids
    ]


def _infer_stopwords(stopwords: Union[str, List[str]]) -> Union[List[str], tuple]:
    # Source of stopwords: https://github.com/nltk/nltk/blob/96ee715997e1c8d9148b6d8e1b32f412f31c7ff7/nltk/corpus/__init__.py#L315
    if stopwords in ["english", "en", True]:  # True is added to support the default
        return STOPWORDS_EN
    elif stopwords in ["english_plus", "en_plus"]:
        return STOPWORDS_EN_PLUS
    elif stopwords in ["german", "de"]:
        return STOPWORDS_GERMAN
    elif stopwords in ["dutch", "nl"]:
        return STOPWORDS_DUTCH
    elif stopwords in ["french", "fr"]:
        return STOPWORDS_FRENCH
    elif stopwords in ["spanish", "es"]:
        return STOPWORDS_SPANISH
    elif stopwords in ["portuguese", "pt"]:
        return STOPWORDS_PORTUGUESE
    elif stopwords in ["italian", "it"]:
        return STOPWORDS_ITALIAN
    elif stopwords in ["russian", "ru"]:
        return STOPWORDS_RUSSIAN
    elif stopwords in ["swedish", "sv"]:
        return STOPWORDS_SWEDISH
    elif stopwords in ["norwegian", "no"]:
        return STOPWORDS_NORWEGIAN
    elif stopwords in ["chinese", "zh"]:
        return STOPWORDS_CHINESE
    elif stopwords in [None, False]:
        return []
    elif isinstance(stopwords, str):
        raise ValueError(
            f"{stopwords} not recognized. Only English stopwords as default, German, Dutch, French, Spanish, Portuguese, Italian, Russian, Swedish, Norwegian, and Chinese are currently supported. "
            "Please input a list of stopwords"
        )
    else:
        return stopwords


def tokenize(
    texts: Union[str, List[str]],
    lower: bool = True,
    token_pattern: str = r"(?u)\b\w\w+\b",
    stopwords: Union[str, List[str]] = "english",
    stemmer: Callable = None,  # type: ignore
    return_ids: bool = True,
    show_progress: bool = True,
    leave: bool = False,
    allow_empty: bool = True,
) -> Union[List[List[str]], Tokenized]:
    """
    Tokenize a list using the same method as the scikit-learn CountVectorizer,
    and optionally apply a stemmer to the tokens or stopwords removal.

    If you provide stemmer, it must have a `stemWords` method, or be callable
    that takes a list of strings and returns a list of strings. If your stemmer
    can only be called on a single word, you can use a lambda function to wrap it,
    e.g. `lambda lst: list(map(stemmer.stem, lst))`.

    If return_ids is True, the function will return a namedtuple with: (1) the tokenized
    IDs and (2) the token_to_index dictionary. You can access the tokenized IDs using
    the `ids` attribute and the token_to_index dictionary using the `vocab` attribute,
    You can also destructure the namedtuple to get the ids and vocab_dict variables,
    e.g. `token_ids, vocab = tokenize(...)`.

    Parameters
    ----------
    texts : Union[str, List[str]]
        A list of strings to tokenize. If a single string is provided, it will be
        converted to a list with a single element.

    lower : bool, optional
        Whether to convert the text to lowercase before tokenization

    token_pattern : str, optional
        The regex pattern to use for tokenization, by default, r"(?u)\\b\\w\\w+\\b"

    stopwords : Union[str, List[str]], optional
        The list of stopwords to remove from the text. If "english" or "en" is provided,
        the function will use the default English stopwords

    stemmer : Callable, optional
        The stemmer to use for stemming the tokens. It is recommended
        to use the PyStemmer library for stemming, but you can also any callable that
        takes a list of strings and returns a list of strings.

    return_ids : bool, optional
        Whether to return the tokenized IDs and the vocab dictionary. If False, the
        function will return the tokenized strings. If True, the function will return
        a namedtuple with the tokenized IDs and the vocab dictionary.

    show_progress : bool, optional
        Whether to show the progress bar for tokenization. If False, the function will
        not show the progress bar. If True, it will use tqdm.auto to show the progress bar.

    leave : bool, optional
        Whether to leave the progress bar after completion. If False, the progress bar
        will disappear after completion. If True, the progress bar will stay on the screen.

    allow_empty : bool, optional
        Whether to allow the splitter to return an empty string. If False, the splitter
        will return an empty list, which may cause issues if the tokenizer is not expecting
        an empty list. If True, the splitter will return a list with a single empty string.
    Note
    -----
    You may pass a single string or a list of strings. If you pass a single string,
    this function will convert it to a list of strings with a single element.
    """
    if isinstance(texts, str):
        texts = [texts]

    split_fn = re.compile(token_pattern).findall
    stopwords = _infer_stopwords(stopwords)

    # Step 1: Split the strings using the regex pattern
    corpus_ids = []
    token_to_index = {}

    for text in tqdm(
        texts, desc="Split strings", leave=leave, disable=not show_progress
    ):
        stopwords_set = set(stopwords)
        if lower:
            text = text.lower()

        splitted = split_fn(text)

        if allow_empty is False and len(splitted) == 0:
            splitted = [""]

        doc_ids = []

        for token in splitted:
            if token in stopwords_set:
                continue

            if token not in token_to_index:
                token_to_index[token] = len(token_to_index)

            token_id = token_to_index[token]
            doc_ids.append(token_id)

        corpus_ids.append(doc_ids)

    # Create a list of unique tokens that we will use to create the vocabulary
    unique_tokens = list(token_to_index.keys())

    # Step 2: Stem the tokens if a stemmer is provided
    if stemmer is not None:
        if hasattr(stemmer, "stemWords"):
            stemmer_fn = stemmer.stemWords
        elif callable(stemmer):
            stemmer_fn = stemmer
        else:
            error_msg = "Stemmer must have a `stemWord` method, or be callable. For example, you can use the PyStemmer library."
            raise ValueError(error_msg)

        # Now, we use the stemmer on the token_to_index dictionary to get the stemmed tokens
        tokens_stemmed = stemmer_fn(unique_tokens)
        vocab = set(tokens_stemmed)
        vocab_dict = {token: i for i, token in enumerate(vocab)}
        stem_id_to_stem = {v: k for k, v in vocab_dict.items()}
        # We create a dictionary mapping the stemmed tokens to their index
        doc_id_to_stem_id = {
            token_to_index[token]: vocab_dict[stem]
            for token, stem in zip(unique_tokens, tokens_stemmed)
        }

        # Now, we simply need to replace the tokens in the corpus with the stemmed tokens
        for i, doc_ids in enumerate(
            tqdm(corpus_ids, desc="Stem Tokens", leave=leave, disable=not show_progress)
        ):
            corpus_ids[i] = [doc_id_to_stem_id[doc_id] for doc_id in doc_ids]
    else:
        vocab_dict = token_to_index

    # Step 3: Return the tokenized IDs and the vocab dictionary or the tokenized strings
    if return_ids:
        return Tokenized(ids=corpus_ids, vocab=vocab_dict)
    else:
        # We need a reverse dictionary to convert the token IDs back to tokens
        reverse_dict = stem_id_to_stem if stemmer is not None else unique_tokens
        # We convert the token IDs back to tokens in-place
        for i, token_ids in enumerate(
            tqdm(
                corpus_ids,
                desc="Reconstructing token strings",
                leave=leave,
                disable=not show_progress,
            )
        ):
            corpus_ids[i] = [reverse_dict[token_id] for token_id in token_ids]
        return corpus_ids