File size: 9,518 Bytes
08fac87
 
 
26cf2c7
08fac87
 
 
 
 
 
 
 
 
 
3b06efd
08fac87
 
3b06efd
08fac87
 
 
 
 
 
 
 
 
 
 
f6e2d8a
 
 
08fac87
 
100d2c7
08fac87
 
 
 
7320bf1
08fac87
 
 
 
 
 
3b06efd
08fac87
 
 
 
7e18a82
08fac87
 
 
 
7320bf1
 
 
08fac87
 
7320bf1
 
 
08fac87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7320bf1
 
 
 
 
 
08fac87
 
7320bf1
 
 
 
 
 
08fac87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7320bf1
08fac87
 
 
 
3b06efd
08fac87
7e18a82
08fac87
 
3b06efd
 
 
08fac87
 
3b06efd
08fac87
3b06efd
08fac87
 
 
 
 
 
 
f6e2d8a
 
08fac87
7320bf1
08fac87
 
 
 
 
 
 
100d2c7
08fac87
 
 
 
 
 
 
100d2c7
08fac87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Main retriever modules
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_chroma import Chroma
from langchain.retrievers import ParentDocumentRetriever, EnsembleRetriever
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever, RetrieverLike
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from typing import Any, Optional
import chromadb
import torch
import os
import re

# To use OpenAI models (remote)
from langchain_openai import OpenAIEmbeddings

## To use Hugging Face models (local)
# from langchain_huggingface import HuggingFaceEmbeddings
# For more control over BGE and Nomic embeddings
from langchain_community.embeddings import HuggingFaceBgeEmbeddings

# Local modules
from mods.bm25s_retriever import BM25SRetriever
from mods.file_system import LocalFileStore

# Database directory
db_dir = "db"

# Embedding model
embedding_model_id = "nomic-ai/nomic-embed-text-v1.5"


def BuildRetriever(
    compute_mode,
    search_type: str = "hybrid",
    top_k=6,
    start_year=None,
    end_year=None,
    embedding_ckpt_dir=None,
):
    """
    Build retriever instance.
    All retriever types are configured to return up to 6 documents for fair comparison in evals.

    Args:
        compute_mode: Compute mode for embeddings (remote or local)
        search_type: Type of search to use. Options: "dense", "sparse", "hybrid"
        top_k: Number of documents to retrieve for "dense" and "sparse"
        start_year: Start year (optional)
        end_year: End year (optional)
        embedding_ckpt_dir: Directory for embedding model checkpoint
    """
    if search_type == "dense":
        if not (start_year or end_year):
            # No year filtering, so directly use base retriever
            return BuildRetrieverDense(
                compute_mode, top_k=top_k, embedding_ckpt_dir=embedding_ckpt_dir
            )
        else:
            # Get 1000 documents then keep top_k filtered by year
            base_retriever = BuildRetrieverDense(
                compute_mode, top_k=1000, embedding_ckpt_dir=embedding_ckpt_dir
            )
            return TopKRetriever(
                base_retriever=base_retriever,
                top_k=top_k,
                start_year=start_year,
                end_year=end_year,
            )
    if search_type == "sparse":
        if not (start_year or end_year):
            return BuildRetrieverSparse(top_k=top_k)
        else:
            base_retriever = BuildRetrieverSparse(top_k=1000)
            return TopKRetriever(
                base_retriever=base_retriever,
                top_k=top_k,
                start_year=start_year,
                end_year=end_year,
            )
    elif search_type == "hybrid":
        # Hybrid search (dense + sparse) - use ensemble method
        # https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html
        # Use floor (top_k // 2) and ceiling -(top_k // -2) to divide odd values of top_k
        # https://stackoverflow.com/questions/14822184/is-there-a-ceiling-equivalent-of-operator-in-python
        dense_retriever = BuildRetriever(
            compute_mode,
            "dense",
            (top_k // 2),
            start_year,
            end_year,
            embedding_ckpt_dir,
        )
        sparse_retriever = BuildRetriever(
            compute_mode,
            "sparse",
            -(top_k // -2),
            start_year,
            end_year,
            embedding_ckpt_dir,
        )
        ensemble_retriever = EnsembleRetriever(
            retrievers=[dense_retriever, sparse_retriever], weights=[1, 1]
        )
        return ensemble_retriever
    else:
        raise ValueError(f"Unsupported search type: {search_type}")


def BuildRetrieverSparse(top_k=6):
    """
    Build sparse retriever instance

    Args:
        top_k: Number of documents to retrieve
    """
    # BM25 persistent directory
    bm25_persist_directory = f"{db_dir}/bm25"
    if not os.path.exists(bm25_persist_directory):
        os.makedirs(bm25_persist_directory)

    # Use BM25 sparse search
    retriever = BM25SRetriever.from_persisted_directory(
        path=bm25_persist_directory,
        k=top_k,
    )
    return retriever


def BuildRetrieverDense(compute_mode: str, top_k=6, embedding_ckpt_dir=None):
    """
    Build dense retriever instance with ChromaDB vectorstore

    Args:
        compute_mode: Compute mode for embeddings (remote or local)
        top_k: Number of documents to retrieve
        embedding_ckpt_dir: Directory for embedding model checkpoint
    """

    # Don't try to use local models without a GPU
    if compute_mode == "local" and not torch.cuda.is_available():
        raise Exception("Local embeddings selected without GPU")

    # Define embedding model
    if compute_mode == "remote":
        embedding_function = OpenAIEmbeddings(model="text-embedding-3-small")
    if compute_mode == "local":
        # embedding_function = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5", show_progress=True)
        # https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.huggingface.HuggingFaceBgeEmbeddings.html
        model_kwargs = {
            "device": "cuda",
            "trust_remote_code": True,
        }
        encode_kwargs = {"normalize_embeddings": True}
        # Use embedding model ID or checkpoint directory if given
        id_or_dir = embedding_ckpt_dir if embedding_ckpt_dir else embedding_model_id
        embedding_function = HuggingFaceBgeEmbeddings(
            model_name=id_or_dir,
            model_kwargs=model_kwargs,
            encode_kwargs=encode_kwargs,
            query_instruction="search_query:",
            embed_instruction="search_document:",
        )
    # Create vector store
    client_settings = chromadb.config.Settings(anonymized_telemetry=False)
    persist_directory = f"{db_dir}/chroma_{compute_mode}"
    vectorstore = Chroma(
        collection_name="R-help",
        embedding_function=embedding_function,
        client_settings=client_settings,
        persist_directory=persist_directory,
    )
    # The storage layer for the parent documents
    file_store = f"{db_dir}/file_store_{compute_mode}"
    byte_store = LocalFileStore(file_store)
    # Text splitter for child documents
    child_splitter = RecursiveCharacterTextSplitter(
        separators=["\n\n", "\n", ".", " ", ""],
        chunk_size=1000,
        chunk_overlap=100,
    )
    # Text splitter for parent documents
    parent_splitter = RecursiveCharacterTextSplitter(
        separators=["\n\n\nFrom"], chunk_size=1, chunk_overlap=0
    )
    # Instantiate a retriever
    retriever = ParentDocumentRetriever(
        vectorstore=vectorstore,
        # NOTE: https://github.com/langchain-ai/langchain/issues/9345
        # Define byte_store = LocalFileStore(file_store) and use byte_store instead of docstore in ParentDocumentRetriever
        byte_store=byte_store,
        child_splitter=child_splitter,
        parent_splitter=parent_splitter,
        # Get top k documents
        search_kwargs={"k": top_k},
    )
    return retriever


class TopKRetriever(BaseRetriever):
    """Retriever that wraps a base retriever and returns the top k documents, optionally matching given start and/or end years."""

    # Code adapted from langchain/retrievers/contextual_compression.py

    base_retriever: RetrieverLike
    """Base Retriever to use for getting relevant documents."""

    top_k: int = 6
    """Number of documents to return."""

    start_year: Optional[int] = None
    end_year: Optional[int] = None

    def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
        **kwargs: Any,
    ) -> list[Document]:
        """Return the top k documents within start and end years if given.

        Returns:
            Sequence of documents
        """
        # Run the search with the base retriever
        filtered_docs = retrieved_docs = self.base_retriever.invoke(
            query, config={"callbacks": run_manager.get_child()}, **kwargs
        )
        if retrieved_docs:

            # Get the sources (file names) and years
            sources = [doc.metadata["source"] for doc in filtered_docs]
            years = [
                re.sub(r"-[A-Za-z]+\.txt", "", source.replace("R-help/", ""))
                for source in sources
            ]
            # Convert years to integer
            years = [int(year) for year in years]

            # Filtering by year
            if self.start_year:
                in_range = after_start = [year >= self.start_year for year in years]
            if self.end_year:
                in_range = before_end = [year <= self.end_year for year in years]
            if self.start_year and self.end_year:
                in_range = [
                    after and before for after, before in zip(after_start, before_end)
                ]
            if self.start_year or self.end_year:
                # Extract docs where the year is in the start-end range
                filtered_docs = [
                    doc for doc, in_range in zip(retrieved_docs, in_range) if in_range
                ]

            # Return the top k docs
            return filtered_docs[: self.top_k]

        else:
            return []