import argparse import sys import random import time from omegaconf import open_dict import matplotlib.pyplot as plt sys.path.extend([".", ".."]) from generate_ply_sequence import get_cam_k from point_utils import read_calib, generate_point_grid, get_fov_mask from gen_voxelgrid_npy import save_as_voxel_ply, remove_invisible import logging from pathlib import Path import subprocess import yaml import cv2 import os import numpy as np from tqdm import tqdm import pickle import torch from torch import nn import torch.nn.functional as F from hydra import compose, initialize import matplotlib.pyplot as plt from sscbench_dataset import SSCBenchDataset from pathlib import Path from scipy.optimize import linear_sum_assignment import torchvision RELOAD_DATASET = True DATASET_LENGTH = 10 FULL_EVAL = True SAMPLE_EVERY = None SAMPLE_OFFSET = 2 SAMPLE_RANGE = None SIZE = 51.2 # Can be: 51.2, 25.6, 12.8 SIZES = (12.8, 25.6, 51.2) VOXEL_SIZE = 0.2 # Needs: 0.2 % VOXEL_SIZE == 0 USE_ADDITIONAL_INVALIDS = True TEST_ALPHA_CUTOFFS = False SEARCH_VALUES = [10e-1, 10e-2, 10e-3, 10e-4, 10e-5, 10e-6, 10e-7] SIGMA_CUTOFF = 0.2 USE_ALPHA_WEIGHTING = True USE_GROW = True CREATE_SIGMA_TRADEOFF_PLOT = True SIGMA_VALUES = [1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001] PLOT_ALL_IMAGES = False GENERATE_PLY_FILES = False PLY_ONLY_FOV = True PLY_IDS = [300, 400, 470] OUTPUT_PATH = Path("") PLY_SIZES = [25.6, 51.2] GENERATE_STATISTICS = False # For ply generation: # USE_ADDITIONAL_INVALIDS = False # USE_GROW = False # GENERATE_PLY_FILES = True os.system("nvidia-smi") device = f'cuda:0' # DO NOT TOUCH OR YOU WILL BREAK RUNS (should be None) gpu_id = None if gpu_id is not None: print("GPU ID: " + str(gpu_id)) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) if torch.cuda.is_available(): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True logging.basicConfig(level=logging.INFO) def main(): parser = argparse.ArgumentParser("SSCBenchmark Output generation") parser.add_argument("--sscbench_data_root", "-ssc", type=str) parser.add_argument("--voxel_gt_path", "-vgt", type=str) parser.add_argument("--resolution", "-r", default=(192, 640)) parser.add_argument("--checkpoint", "-cp", type=str, required=True) parser.add_argument("--full", "-f", action="store_true") parser.add_argument("--mode", "-m", default="s4c") parser.add_argument("--ply_checkname", "-p", default="none") args = parser.parse_args() sscbench_data_root = args.sscbench_data_root voxel_gt_path = args.voxel_gt_path resolution = args.resolution cp_path = args.checkpoint full_evaluation = args.full mode = args.mode ply_checkname = args.ply_checkname if FULL_EVAL: full_evaluation = True if GENERATE_PLY_FILES: assert (not USE_GROW) and (not USE_ADDITIONAL_INVALIDS) # and VOXEL_SIZE == 0.1 # make the necessary dirs for size in PLY_SIZES: if not os.path.exists(OUTPUT_PATH / ply_checkname / str(int(size))): os.makedirs(OUTPUT_PATH / ply_checkname / str(int(size))) if not os.path.exists(OUTPUT_PATH / ply_checkname): os.makedirs(OUTPUT_PATH / ply_checkname) logging.info(f"Using a sigma cutoff of {SIGMA_CUTOFF}") logging.info("Setting up dataset") with open("label_maps.yaml", "r") as f: label_maps = yaml.safe_load(f) # pickle the dataset so we don't have to wait all the time if os.path.isfile("dataset.pkl") and not RELOAD_DATASET: logging.info("Loading dataset from dataset.pkl file.") with open("dataset.pkl", "rb") as f: dataset = pickle.load(f) else: logging.info("Generating the dataset and dumping it to dataset.pkl") dataset = SSCBenchDataset( data_path=sscbench_data_root, voxel_gt_path=voxel_gt_path, sequences=(9,), target_image_size=resolution, return_stereo=False, frame_count=1, color_aug=False, load_fisheye=True, fisheye_offset=10, ) if DATASET_LENGTH and not full_evaluation: dataset.length = DATASET_LENGTH with open("dataset.pkl", 'wb') as f: pickle.dump(dataset, f) logging.info("Setting up the model...") config_path = "exp_kitti_360" cp_path = Path(cp_path) if cp_path.suffix == ".pt": cp_root_path = cp_path.parent else: cp_root_path = cp_path cp_path = next(cp_root_path.glob("training*.pt")) bts_dino_config_path = "training_config.yaml" PRODUCE_FEAT_VIS = GENERATE_PLY_FILES and mode.startswith("scenedino") prediction_mode = None if mode == "s4c": from models.bts.model import BTSNet from models.common.render import NeRFRenderer initialize(version_base=None, config_path="../../../configs", job_name="gen_sscbench_outputs") config = compose(config_name=config_path, overrides=[]) logging.info('Loading checkpoint') cp = torch.load(cp_path, map_location=device) with open_dict(config): config["renderer"]["hard_alpha_cap"] = True config["model_conf"]["code_mode"] = "z" # config["model_conf"]["z_near"] = 8 config["model_conf"]["mlp_coarse"]["n_blocks"] = 0 config["model_conf"]["mlp_coarse"]["d_hidden"] = 64 config["model_conf"]["encoder"]["d_out"] = 64 config["model_conf"]["encoder"]["type"] = "monodepth2" config["model_conf"]["grid_learn_empty"] = False config["model_conf"]["sample_color"] = True # stuff for segmentation config["model_conf"]["segmentation_mode"] = "panoptic_deeplab" net = BTSNet(config["model_conf"]) net.sample_color = False renderer = NeRFRenderer.from_conf(config["renderer"]) renderer = renderer.bind_parallel(net, gpus=None).eval() renderer.renderer.n_coarse = 64 renderer.renderer.lindisp = True class _Wrapper(nn.Module): def __init__(self): super().__init__() self.renderer = renderer _wrapper = _Wrapper() _wrapper.load_state_dict(cp["model"], strict=False) renderer.to(device) renderer.eval() elif mode.startswith("scenedino"): from scenedino.models import make_model as dino_bts_make_model from scenedino.renderer.nerf import NeRFRenderer as dino_bts_NeRFRenderer from scenedino.common.ray_sampler import ImageRaySampler as dino_bts_ImageRaySampler bts_dino_parent_relative = Path("../../../../") bts_dino_parent_absolute = str(bts_dino_parent_relative.resolve()) initialize(version_base=None, config_path=str(bts_dino_parent_relative / cp_root_path.relative_to(bts_dino_parent_absolute)), job_name="gen_sscbench_outputs") config = compose(config_name=bts_dino_config_path, overrides=[]) logging.info('Loading checkpoint') cp = torch.load(cp_path, map_location=device) net = dino_bts_make_model(config["model"], config["downstream"]) renderer = dino_bts_NeRFRenderer.from_conf(config["renderer"]) renderer.hard_alpha_cap = False renderer = renderer.bind_parallel(net, gpus=None).eval() class _Wrapper(nn.Module): def __init__(self): super().__init__() self.renderer = renderer _wrapper = _Wrapper() _wrapper.load_state_dict(cp, strict=False) # _wrapper.load_state_dict(cp["model"], strict=False) renderer.to(device) renderer.eval() height, width = config["dataset"]["image_size"] ray_sampler = dino_bts_ImageRaySampler(z_near=3, z_far=80, width=width, height=height) if mode == "scenedino_linear": prediction_mode = "direct_linear" elif mode == "scenedino_direct_cluster": prediction_mode = "direct_kmeans" else: prediction_mode = "stego_kmeans" else: raise NotImplementedError() logging.info("Loading the Lidar to Camera matrices...") calib = read_calib() T_velo_2_cam = calib["Tr"] logging.info("Generating the point cloud...") pts, _ = generate_point_grid(vox_origin=np.array([0, -25.6, -2]), scene_size=(51.2, 51.2, 6.4), voxel_size=VOXEL_SIZE, cam_E=T_velo_2_cam, cam_k=get_cam_k()) fov_mask = get_fov_mask() pts = torch.tensor(pts).to(device).reshape(1, -1, 3).float() fov_mask = fov_mask.reshape(256, 256, 32) logging.info("Setting up folders...") downsample_factor = int(0.2 // VOXEL_SIZE) results = {} for size in SIZES: results[size] = { "tp": 0, "fp": 0, "tn": 0, "fn": 0, "tp_seg": np.zeros(15), "fp_seg": np.zeros(15), "tn_seg": np.zeros(15), "fn_seg": np.zeros(15), "confusion_seg": np.zeros((16, 16)), "tp_recall_seg": np.zeros(15), "sum_recall_seg": np.zeros(15), } # for the sigma tradeoff plots trade_off_values = np.zeros([len(SIGMA_VALUES), 4]) cutoff_results = {i: {sv: {"tp":0, "fp": 0, "tn": 0, "fn": 0} for sv in SEARCH_VALUES} for i in range(1, 16)} pbar = tqdm(range(len(dataset))) # Randomly select indices without replacement # dataset_size = len(dataset) # subset_size = dataset_size // 10 # subset_indices = random.sample(range(dataset_size), subset_size) # pbar = tqdm(subset_indices) images = {"ids": [], "images": []} ids = [125, 280, 960, 1000, 1150, 1325, 2300, 3175, 3750, 4300, 5155, 5475, 5750, 6475, 6525, 6670, 6775, 7500, 7860, 8000, 8350, 9000, 9350, 10975] ids = [60, 250, 455, 690, 835, 2235, 2385, 2495, 3385, 4235, 4360, 4550, 4875, 5550, 6035, 7010, 7110, 8575, 9010, 9410, 11260, 11460, 11885] # for our statistics tframeIds = [] tinval = [] ttp = [] tfp = [] ttn = [] tfn = [] # plot_image_at_frame_id(dataset, 952) for i in pbar: if SAMPLE_EVERY: if (i - SAMPLE_OFFSET) % SAMPLE_EVERY != 0: continue sequence, id, is_right = dataset._datapoints[i] if SAMPLE_RANGE: if id not in SAMPLE_RANGE: continue if GENERATE_PLY_FILES and id not in PLY_IDS: continue if GENERATE_STATISTICS: tframeIds.append(id) data = dataset[i] torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() start_time = time.time() # downsample the sigmas sigmas, segs, dino = downsample_and_predict(data, net, pts, downsample_factor, prediction_mode, vis=GENERATE_PLY_FILES, feat_vis=PRODUCE_FEAT_VIS) torch.cuda.synchronize() inference_time = time.time() - start_time memory_used = torch.cuda.max_memory_allocated(device) / 1024**2 # in MB num_params = sum(p.numel() for key, p in net.named_parameters() if not key.startswith("encoder.gt_encoder")) #print(f"Inference time: {inference_time:.6f} seconds") #print(f"Memory used: {memory_used:.2f} MB") #print(f"Number of parameters: {num_params:,}") # convert both to the right format segs = convert_voxels(segs, label_maps["cityscapes_to_label"]) target = convert_voxels(data["voxel_gt"][0].astype(int), label_maps["sscbench_to_label"]) is_occupied_seg = torch.Tensor(sigmas > SIGMA_CUTOFF).to(torch.bool) is_occupied_seg = remove_invisible(is_occupied_seg) #raise ValueError(is_occupied_seg, segs) is_occupied_seg[segs==0] = False images = torch.stack([torch.Tensor(_img) for _img in data["imgs"]], dim=0).cuda() if PRODUCE_FEAT_VIS: dino = calculate_pca(dino, is_occupied_seg, net) dino = (255*dino).astype(int) poses = torch.stack([torch.Tensor(_pose) for _pose in data["poses"]], dim=0).unsqueeze(0).cuda() projs = torch.stack([torch.Tensor(_proj) for _proj in data["projs"]], dim=0).unsqueeze(0).cuda() poses = torch.inverse(poses[:, :1]) @ poses all_rays, _ = ray_sampler.sample(None, poses, projs) render_dict = renderer(all_rays[:, :], want_weights=True, want_alphas=True) render_dict = ray_sampler.reconstruct(render_dict) dino_features = net.encoder.expand_dim(render_dict["coarse"]["dino_features"]).squeeze() dino_gt = net.encoder.gt_encoder(images / 2 + 0.5)[-1].permute(0, 2, 3, 1) dino_gt = F.normalize(dino_gt, dim=-1) dino_rgb_vis = torch.clamp(net.encoder.transform_visualization(dino_features.cpu()), min=-0.5, max=0.5) + 0.5 dino_rgb_vis_gt = torch.clamp(net.encoder.transform_visualization(dino_gt.cpu()), min=-0.5, max=0.5) + 0.5 dino_rgb_vis_gt = dino_rgb_vis_gt.repeat_interleave(8, 1).repeat_interleave(8, 2) if PLOT_ALL_IMAGES: images["ids"].append(id) images["images"].append(((data["imgs"][0] + 1) / 2).permute(1, 2, 0)) if len(images["ids"]) == 6: plot_images(images) images = {"images": [], "ids": []} # print(f"Image_Id: {id}") # # plt.imshow(((data["imgs"][0] + 1) / 2).permute(1, 2, 0)) # plt.show() # # out_dict = {"sigmas": sigmas, "segs": segs.copy(), "gt": target, "fov_mask": fov_mask} # # with open(f'plots10_40/{id:06d}.pkl', 'wb') as f: # pickle.dump(out_dict, f) if GENERATE_PLY_FILES: _segs = segs.copy() _target = target.copy() if PRODUCE_FEAT_VIS: _dino = dino.copy() mask = target != 255 if PLY_ONLY_FOV: mask = mask & fov_mask seg_mask = mask.copy() for dim in range(seg_mask.ndim): seg_mask = np.repeat(seg_mask, downsample_factor, axis=dim) # _segs[~seg_mask] = 0 # _dino[~seg_mask] = 0 _target[~mask] = 0 is_occupied_seg = is_occupied_seg.logical_and(torch.Tensor(fov_mask)) # is_occupied_seg = torch.tensor(_segs > 0) is_occupied_gt = torch.tensor(_target > 0) full_num_voxels = int(SIZE // VOXEL_SIZE) for idx in range(images.size(0)): torchvision.utils.save_image(((images[idx] + 1) / 2), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_image_{idx}.png") if PRODUCE_FEAT_VIS: torchvision.utils.save_image(dino_rgb_vis[idx].permute(2, 0, 1), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_features_{idx}.png") torchvision.utils.save_image(dino_rgb_vis_gt[idx].permute(2, 0, 1), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_features_gt_{idx}.png") images = None for size in PLY_SIZES: num_voxels = int(size // 0.2) save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_gt.ply", is_occupied_gt[: num_voxels, (128 - num_voxels // 2): (128 + num_voxels // 2),:], voxel_size=0.2, classes=torch.tensor(_target[: num_voxels, (128 - num_voxels // 2): (128 + num_voxels // 2),:])) num_voxels = int(size // VOXEL_SIZE) save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}.ply", is_occupied_seg[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:], size=(num_voxels, num_voxels, num_voxels//8), voxel_size=VOXEL_SIZE, classes=torch.tensor(_segs[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:])) if PRODUCE_FEAT_VIS: save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_feat.ply", is_occupied_seg[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:], size=(num_voxels, num_voxels, num_voxels//8), voxel_size=VOXEL_SIZE, colors=torch.tensor(_dino[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:])) continue if USE_ADDITIONAL_INVALIDS: invalids = identify_additional_invalids(target) # logging.info(np.mean(invalids)) target[invalids == 1] = 255 if GENERATE_STATISTICS: tinval.append(np.mean(invalids)) # test and summarize different alpha cutoffs if TEST_ALPHA_CUTOFFS: for i in range(1, 16): for search_value in SEARCH_VALUES: _tmp = segs.copy() _tmp[np.logical_and(segs == i, sigmas < search_value)] = 0 _tp_seg, _fp_seg, _tn_seg, _fn_seg = compute_occupancy_numbers_segmentation( y_pred=_tmp, y_true=target, fov_mask=fov_mask, labels=label_maps["labels"]) cutoff_results[i][search_value]["tp"] += _tp_seg[i-1] cutoff_results[i][search_value]["fp"] += _fp_seg[i-1] cutoff_results[i][search_value]["tn"] += _tn_seg[i-1] cutoff_results[i][search_value]["fn"] += _fn_seg[i-1] if CREATE_SIGMA_TRADEOFF_PLOT: for i, val in enumerate(SIGMA_VALUES): _tmp = segs.copy() _tmp[sigmas < val] = 0 _tp, _fp, _tn, _fn = compute_occupancy_numbers(y_pred=_tmp, y_true=target, fov_mask=fov_mask) trade_off_values[i] += np.array([_tp, _fp, _tn, _fn]) segs[sigmas < SIGMA_CUTOFF] = 0 for size in SIZES: num_voxels = int(size // 0.2) # resize to right scene size _segs = segs[:num_voxels, (128 - num_voxels//2):(128 + num_voxels//2), :] _target = target[:num_voxels, (128 - num_voxels//2):(128 + num_voxels//2), :] _fov_mask = fov_mask[:num_voxels, (128 - num_voxels // 2):(128 + num_voxels // 2), :] _tp, _fp, _tn, _fn = compute_occupancy_numbers(y_pred=_segs, y_true=_target, fov_mask=_fov_mask) _tp_seg, _fp_seg, _tn_seg, _fn_seg, _confusion_seg = compute_occupancy_numbers_segmentation( y_pred=_segs, y_true=_target, fov_mask=_fov_mask, labels=label_maps["labels"]) _tp_rec_seg, _sum_rec_seg = compute_occupancy_recall_segmentation( y_pred=_segs, y_true=_target, fov_mask=_fov_mask, labels=label_maps["labels"]) if size == 51.2 and GENERATE_STATISTICS: ttp += [_tp] tfp += [_fp] ttn += [_fn] tfn += [_fn] results[size]["tp"] += _tp results[size]["fp"] += _fp results[size]["tn"] += _tn results[size]["fn"] += _fn results[size]["tp_seg"] += _tp_seg results[size]["fp_seg"] += _fp_seg results[size]["tn_seg"] += _tn_seg results[size]["fn_seg"] += _fn_seg results[size]["confusion_seg"] += _confusion_seg results[size]["tp_recall_seg"] += _tp_rec_seg results[size]["sum_recall_seg"] += _sum_rec_seg recall = results[size]["tp"] / (results[size]["tp"] + results[size]["fn"]) precision = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"]) iou = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"] + results[size]["fn"]) pbar.set_postfix_str(f"IoU: {iou*100:.2f} Prec: {precision*100:.2f} Rec: {recall*100:.2f}") result_str = "" for mode in ["direct", "hungarian"]: results_table = np.zeros((19, 3), dtype=np.float32) if mode == "hungarian": assignments = linear_sum_assignment(results[51.2]["confusion_seg"], maximize=True) # Hungarian matching on full range # Here we compute all the metrics for size_i, size in enumerate(SIZES): recall = results[size]["tp"] / (results[size]["tp"] + results[size]["fn"]) precision = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"]) iou = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"] + results[size]["fn"]) results_table[0, size_i] = iou results_table[1, size_i] = precision results_table[2, size_i] = recall # logging.info(f"#" * 50) # logging.info(f"Results for size {size}. ") # logging.info(f"#" * 50) # logging.info("Occupancy metrics") # logging.info(f"Recall: {recall*100:.2f}%") # logging.info(f"Precision: {precision*100:.2f}%") # logging.info(f"IoU: {iou*100:.2f}") # recall_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fn_seg"]) # precision_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fp_seg"]) # iou_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fp_seg"] + results[size]["fn_seg"]) # mean_iou = np.mean(np.nan_to_num(iou_seg)) # Calculate hungarian matching confusion_matrix = results[size]["confusion_seg"] if mode == "hungarian": confusion_matrix = confusion_matrix[np.argsort(assignments[1]), :] confusion_matrix_tp = np.diag(confusion_matrix) confusion_matrix_denom = confusion_matrix.sum(0) + confusion_matrix.sum(1) - confusion_matrix_tp confusion_matrix_per_class_iou = confusion_matrix_tp[1:] / confusion_matrix_denom[1:] confusion_matrix_miou = np.mean(np.nan_to_num(confusion_matrix_per_class_iou)) # occupancy_recall_seg = results[size]["tp_recall_seg"] / results[size]["sum_recall_seg"] weights = label_maps["weights"] weights_val = np.array(list(weights.values())) weighted_mean_iou = np.sum(weights_val * np.nan_to_num(confusion_matrix_per_class_iou)) / np.sum(weights_val) results_table[3, size_i] = confusion_matrix_miou results_table[4:, size_i] = confusion_matrix_per_class_iou row_labels = [ "IoU", "Precision", "Recall", "mIoU", "car", "bicycle", "motorcycle", "truck", "other-vehicle", "person", "road", "sidewalk", "building", "fence", "vegetation", "terrain", "pole", "traffic-sign", "other-object" ] column_headers = ["12.8m", "25.6m", "51.2m"] result_str += f"\n# Benchmark Results for '{ply_checkname}' / Mode: {mode}\n" result_str += "\n| | " + " | ".join(column_headers) + " |\n" result_str += "|---------------|-------|-------|-------|\n" for i in range(len(row_labels)): row_values = results_table[i] row_str = f"| {row_labels[i]:<13} | " + " | ".join(f"{v * 100:5.2f}" for v in row_values) + " |\n" result_str += row_str if i == 2: result_str += "|---------------|-------|-------|-------|\n" result_str += "\n" if mode == "hungarian": result_str += f"Reassignment: {np.argsort(assignments[1])}\n" result_str += f"Mean IoU: {confusion_matrix_miou * 100:.2f}\n" result_str += f"Weighted Mean IoU: {weighted_mean_iou * 100:.2f}\n\n" print(result_str) if not GENERATE_PLY_FILES: with open(OUTPUT_PATH / ply_checkname / "results.md", "w") as file: file.write(result_str) if TEST_ALPHA_CUTOFFS: cutoff_metrics = \ {i: {sv: {"precision": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fp"])), "recall": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fn"])), "IoU": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fn"] + cutoff_results[i][sv]["fp"]))} for sv in SEARCH_VALUES} for i in range(1, 16)} best_values = {i: SEARCH_VALUES[torch.argmax(torch.tensor([cutoff_metrics[i][sv]["IoU"] for sv in SEARCH_VALUES]))] for i in range(1, 16)} print(best_values) if CREATE_SIGMA_TRADEOFF_PLOT: plt.figure(figsize=(10, 8)) plt.xlabel("Precision") plt.ylabel("Recall") plt.xlim([10, 70]) # plt.ylim([0, 100]) for i, val in enumerate(SIGMA_VALUES): tp, fp, tn, fn = trade_off_values[i] pres = 100*tp / (tp + fp) recall = 100*tp/ (tp + fn) plt.scatter(pres, recall) plt.annotate(f"Sigma: {val}; IoU: {100*tp / (tp + fp + fn):.2f}", (pres, recall)) identifier = os.path.basename(cp_path) if FULL_EVAL: path = f"figures/inv{str(USE_ADDITIONAL_INVALIDS)}_{VOXEL_SIZE:.1f}_mp{str(USE_GROW)}_{identifier}.png" else: path = f"figures/inv{str(USE_ADDITIONAL_INVALIDS)}_{DATASET_LENGTH}_{VOXEL_SIZE:.1f}_mp{str(USE_GROW)}_{identifier}.png" if os.path.isfile(path): os.remove(path) plt.savefig(path) plt.show() if GENERATE_STATISTICS: statistics_raw = {"frameId": tframeIds, "TP": ttp, "FP": tfp, "TN": ttn, "FN": tfn, "invalids": tinval} with open("stats.pkl", "wb") as f: pickle.dump(statistics_raw, f) logging.info("Saved the statistics for further analysis.") def downsample_and_predict(data, net, pts, factor, prediction_mode, vis=False, feat_vis=False): pts = pts.reshape(256*factor, 256*factor, 32*factor, 3) if vis: sigmas = torch.zeros(256*factor, 256*factor, 32*factor).numpy() segs = torch.zeros(256*factor, 256*factor, 32*factor).numpy() if feat_vis: dino = torch.zeros(256*factor, 256*factor, 32*factor, 768).numpy() else: dino = None else: sigmas = torch.zeros(256, 256, 32).numpy() segs = torch.zeros(256, 256, 32).numpy() dino = None chunk_size_x = chunk_size_y = 128 chunk_size_z = 32 n_chunks_x = int(256*factor / chunk_size_x) n_chunks_y = int(256*factor / chunk_size_y) n_chunks_z = int(32*factor / chunk_size_z) if vis: factor = 1 b_x = chunk_size_x // factor # size of the mini blocks b_y = chunk_size_y // factor b_z = chunk_size_z // factor # Changed for efficiency images = torch.stack(data["imgs"], dim=0).unsqueeze(0).to(device).float() poses = torch.tensor(np.stack(data["poses"], 0)).unsqueeze(0).to(device).float() projs = torch.tensor(np.stack(data["projs"], 0)).unsqueeze(0).to(device).float() poses = torch.inverse(poses[:, :1]) @ poses extra_args = {"images_alt": images * 0.5 + 0.5} net.compute_grid_transforms(projs, poses) torch.cuda.synchronize() encoding_start_time = time.time() net.encode(images, projs, poses, ids_encoder=[0], ids_render=[0], **extra_args) torch.cuda.synchronize() encoding_time = time.time() - encoding_start_time #print(f" - Encoding time: {encoding_time:.6f} seconds") net.set_scale(0) for i in range(n_chunks_x): for j in range(n_chunks_y): for k in range(n_chunks_z): pts_block = pts[i * chunk_size_x:(i + 1) * chunk_size_x, j * chunk_size_y:(j + 1) * chunk_size_y, k * chunk_size_z:(k + 1) * chunk_size_z] #with torch.autograd.profiler.profile([torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], use_cuda=True) as prof: sigmas_block, segs_block, dino_feat_block = predict_grid(data, net, pts_block, prediction_mode) #print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=-1)) #raise ValueError("Profiling done.") sigmas_block = sigmas_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z) segs_block = segs_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z, 19) if feat_vis: dino_feat_block = dino_feat_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z, dino_feat_block.size(-1)) if USE_ALPHA_WEIGHTING: alphas = 1 - torch.exp(- VOXEL_SIZE * sigmas_block) segs_block = (alphas.unsqueeze(-1) * segs_block).unsqueeze(0) else: segs_block = (sigmas_block.unsqueeze(-1) * segs_block).unsqueeze(0) if vis: sigmas_block = sigmas_block.detach().cpu().numpy() segs_pool = torch.argmax(segs_block, dim=-1).detach().cpu().numpy() if feat_vis: dino_feat_block = dino_feat_block.detach().cpu().numpy() else: segs_pool_list = [F.avg_pool3d(segs_block[..., i], kernel_size=factor, stride=factor, padding=0) for i in range(segs_block.shape[-1])] segs_pool = torch.stack(segs_pool_list, dim=-1).unsqueeze(0) segs_pool = torch.argmax(segs_pool, dim=-1).detach().cpu().numpy() # pool the observations sigmas_block = F.max_pool3d(sigmas_block.unsqueeze(0), kernel_size=factor, stride=factor, padding=0).squeeze(0).detach().cpu().numpy() sigmas[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = sigmas_block segs[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = segs_pool if feat_vis: dino[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1), :] = dino_feat_block torch.cuda.empty_cache() if USE_GROW: sigmas = F.max_pool3d(torch.tensor(sigmas).unsqueeze(0), kernel_size=3, stride=1, padding=1).squeeze(0).numpy() return sigmas, segs, dino def calculate_pca(dino, is_occupied_seg, net): dino = torch.Tensor(dino) visible_dino = dino[is_occupied_seg] # print(net.encoder.visualization.batch_rgb_mean, net.encoder.visualization.batch_rgb_comp) net.encoder.fit_visualization(visible_dino.flatten(0, -2), refit=True) return torch.clamp(net.encoder.transform_visualization(dino), min=-0.5, max=0.5).cpu().numpy() + 0.5 def use_custom_maxpool(_sigmas): sigmas = torch.zeros(258, 258, 34) sigmas[1:257, 1:257, 1:33] = torch.tensor(_sigmas) sigmas_pooled = torch.zeros(256, 256, 32) for i in range(256): for j in range(256): for k in range(32): sigmas_pooled[i, j, k] = max(sigmas[i+1, j+1, k+1], sigmas[i, j+1, k+1], sigmas[i+1, j, k+1],sigmas[i+1, j+1, k], sigmas[i+2, j+1, k+1], sigmas[i+1, j+2, k+1],sigmas[i+1, j+1, k+2]) return sigmas_pooled def plot_images(images_dict): """The images dict should include six images and six corresponding ids""" images = images_dict["images"] ids = images_dict["ids"] fig, axes = plt.subplots(3, 2, figsize=(10, 6)) axes = axes.flatten() for i, img in enumerate(images): axes[i].imshow(images[i]) axes[i].axis("off") axes[i].set_title(f"FrameId: {ids[i]}") plt.subplots_adjust(wspace=0.01, hspace=0.01) plt.show() def plot_image_at_frame_id(dataset, frame_id): for i in range(len(dataset)): sequence, id, is_right = dataset._datapoints[i] if id == frame_id: data = dataset[i] plt.figure(figsize=(10, 4)) plt.imshow(((data["imgs"][0] + 1) / 2).permute(1, 2, 0)) plt.gca().set_axis_off() plt.show() return def identify_additional_invalids(target): # Note: The Numpy implementation is a bit faster (about 0.1 seconds per iteration) _t = np.concatenate([np.zeros([256, 256, 1]), target], axis=2) invalids = np.cumsum(np.logical_and(_t != 255, _t != 0), axis=2)[:, :, :32] == 0 # _t = torch.cat([torch.zeros([256, 256, 1], device=device, dtype=torch.int32), torch.tensor(target, dtype=torch.int32).to(device)], dim=2) # invalids = torch.cumsum((_t != 255) & (_t != 0), axis=2)[:,:, :32] == 0 # height cut-off (z > 6 ==> no invalid) invalids[: , :, 7:] = 0 # only empty voxels matter invalids[target != 0] = 0 # return invalids.cpu().numpy() return invalids def predict_grid(data_batch, net, points, prediction_mode): # Removed for efficiency # images = torch.stack(data_batch["imgs"], dim=0).unsqueeze(0).to(device).float() # poses = torch.tensor(np.stack(data_batch["poses"], 0)).unsqueeze(0).to(device).float() # projs = torch.tensor(np.stack(data_batch["projs"], 0)).unsqueeze(0).to(device).float() # poses = torch.inverse(poses[:, :1]) @ poses # extra_args = {"images_alt": images * 0.5 + 0.5} # net.compute_grid_transforms(projs, poses) # net.encode(images, projs, poses, ids_encoder=[0], ids_render=[0], **extra_args) # net.set_scale(0) # q_pts = get_pts(X_RANGE, Y_RANGE, Z_RANGE, p_res[1], p_res_y, p_res[0]) # q_pts = q_pts.to(device).reshape(1, -1, 3) # # _, invalid, sigmas = net.forward(q_pts) # points = points.reshape(1, -1, 3) if prediction_mode is not None: dino_feat, invalid, sigmas, segs = net.forward(points, predict_segmentation=True, prediction_mode=prediction_mode) else: dino_feat, invalid, sigmas, segs = net.forward(points, predict_segmentation=True) return sigmas, segs, dino_feat def convert_voxels(arr, map_dict): f = np.vectorize(map_dict.__getitem__) return f(arr) def compute_occupancy_numbers_segmentation(y_pred, y_true, fov_mask, labels): label_ids = list(labels.keys())[1:] mask = y_true != 255 mask = np.logical_and(mask, fov_mask) mask = mask.flatten() y_pred = y_pred.flatten()[mask] y_true = y_true.flatten()[mask] tp = np.zeros(len(label_ids)) fp = np.zeros(len(label_ids)) fn = np.zeros(len(label_ids)) tn = np.zeros(len(label_ids)) for label_id in label_ids: tp[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred == label_id)) fp[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred == label_id)) fn[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred != label_id)) tn[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred != label_id)) dim_conf = len(label_ids) + 1 bincount_values = dim_conf * y_true + y_pred confusion_matrix = np.bincount(bincount_values, minlength=dim_conf*dim_conf).reshape(dim_conf, dim_conf) return tp, fp, tn, fn, confusion_matrix def compute_occupancy_recall_segmentation(y_pred, y_true, fov_mask, labels): label_ids = list(labels.keys())[1:] mask = y_true != 255 mask = np.logical_and(mask, fov_mask) mask = mask.flatten() y_pred = y_pred.flatten()[mask] y_true = y_true.flatten()[mask] tp = np.zeros(len(label_ids)) sum = np.zeros(len(label_ids)) for label_id in label_ids: tp[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred > 0)) sum[label_id - 1] = np.sum(y_true == label_id) return tp, sum def compute_occupancy_numbers(y_pred, y_true, fov_mask): mask = y_true != 255 mask = np.logical_and(mask, fov_mask) mask = mask.flatten() y_pred = y_pred.flatten() y_true = y_true.flatten() occ_true = y_true[mask] > 0 occ_pred = y_pred[mask] > 0 tp = np.sum(np.logical_and(occ_true == 1, occ_pred == 1)) fp = np.sum(np.logical_and(occ_true == 0, occ_pred == 1)) fn = np.sum(np.logical_and(occ_true == 1, occ_pred == 0)) tn = np.sum(np.logical_and(occ_true == 0, occ_pred == 0)) return tp, fp, tn, fn if __name__ == "__main__": #with torch.cuda.amp.autocast(dtype=torch.float16): with torch.no_grad(): main()