Spaces:
Running
Running
File size: 2,681 Bytes
50dd0bc 20bd7b4 50dd0bc 120744c 50dd0bc 2ce9d86 20bd7b4 2ce9d86 50dd0bc 20bd7b4 50dd0bc 120744c 50dd0bc 2ce9d86 50dd0bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
from argparse import ArgumentParser
from logging import getLogger
from pathlib import Path
import yaml
from characters import get_character
from pipeline import SingingDialoguePipeline
logger = getLogger(__name__)
def get_parser():
parser = ArgumentParser()
parser.add_argument("--query_audios", nargs="+", type=Path, required=True)
parser.add_argument(
"--config_path", type=Path, default="config/cli/yaoyin_default.yaml"
)
parser.add_argument("--output_audio_folder", type=Path, required=True)
parser.add_argument("--eval_results_csv", type=Path, required=True)
return parser
def load_config(config_path: Path):
with open(config_path, "r") as f:
config = yaml.safe_load(f)
return config
def main():
parser = get_parser()
args = parser.parse_args()
config = load_config(args.config_path)
pipeline = SingingDialoguePipeline(config)
speaker = config["speaker"]
language = config["language"]
character_name = config["prompt_template_character"]
character = get_character(character_name)
prompt_template = character.prompt
args.output_audio_folder.mkdir(parents=True, exist_ok=True)
args.eval_results_csv.parent.mkdir(parents=True, exist_ok=True)
with open(args.eval_results_csv, "a") as f:
f.write(
f"query_audio,asr_model,llm_model,svs_model,melody_source,language,speaker,output_audio,asr_text,llm_text,metrics\n"
)
try:
for query_audio in args.query_audios:
output_audio = args.output_audio_folder / f"{query_audio.stem}_response.wav"
results = pipeline.run(
query_audio,
language,
prompt_template,
speaker,
output_audio_path=output_audio,
)
metrics = pipeline.evaluate(output_audio, **results)
metrics.update(results.get("metrics", {}))
metrics_str = ",".join([f"{metrics[k]}" for k in sorted(metrics.keys())])
logger.info(
f"Input: {query_audio}, Output: {output_audio}, ASR results: {results['asr_text']}, LLM results: {results['llm_text']}"
)
with open(args.eval_results_csv, "a") as f:
f.write(
f"{query_audio},{config['asr_model']},{config['llm_model']},{config['svs_model']},{config['melody_source']},{config['language']},{config['speaker']},{output_audio},{results['asr_text']},{results['llm_text']},{metrics_str}\n"
)
except Exception as e:
logger.error(f"Error in main: {e}")
breakpoint()
raise e
if __name__ == "__main__":
main()
|