File size: 5,796 Bytes
91394e0
 
 
 
 
 
 
 
 
3166c53
91394e0
 
 
3166c53
91394e0
 
 
 
 
 
 
 
 
 
 
7a3402f
 
 
3166c53
7a3402f
3166c53
7a3402f
 
 
 
 
91394e0
 
 
 
 
 
 
 
 
 
 
 
 
05779d3
 
91394e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad68fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3166c53
05779d3
3166c53
 
 
0ad68fa
4fe78b5
3166c53
4fe78b5
91394e0
 
 
 
0ff7232
91394e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87f144d
91394e0
 
05779d3
91394e0
87f144d
91394e0
05779d3
91394e0
0ff7232
91394e0
 
 
 
 
 
 
 
 
 
 
 
05779d3
91394e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import librosa
import soundfile as sf
import numpy as np
import torch
import uuid
from pathlib import Path

# ----------- Initialization -----------


def init_singmos():
    print("[Init] Loading SingMOS...")
    return torch.hub.load(
        "South-Twilight/SingMOS:v0.3.0", "singing_ssl_mos", trust_repo=True
    )


def init_basic_pitch():
    print("[Init] Loading BasicPitch...")
    from basic_pitch.inference import predict

    return predict


def init_per():
    print("[Init] Loading PER...")
    from transformers import pipeline
    import jiwer

    asr_pipeline = pipeline(
        "automatic-speech-recognition", model="openai/whisper-large-v3-turbo"
    )
    return {
        "asr_pipeline": asr_pipeline,
        "jiwer": jiwer,
    }


def init_audiobox_aesthetics():
    print("[Init] Loading AudioboxAesthetics...")
    from audiobox_aesthetics.infer import initialize_predictor

    predictor = initialize_predictor()
    return predictor


# ----------- Evaluation -----------


def eval_singmos(audio_path, predictor):
    audio_array, sr = librosa.load(audio_path, sr=44100)
    wav = librosa.resample(audio_array, orig_sr=sr, target_sr=16000)
    wav_tensor = torch.from_numpy(wav).unsqueeze(0)
    length_tensor = torch.tensor([wav_tensor.shape[1]])
    score = predictor(wav_tensor, length_tensor)
    return {"singmos": float(score)}


def eval_melody_metrics(audio_path, pitch_extractor):
    model_output, midi_data, note_events = pitch_extractor(audio_path)
    metrics = {}
    assert (
        len(midi_data.instruments) == 1
    ), f"Detected {len(midi_data.instruments)} instruments for {audio_path}"
    midi_notes = midi_data.instruments[0].notes
    melody = [note.pitch for note in midi_notes]
    if len(melody) == 0:
        print(f"No notes detected in {audio_path}")
        return {}
    intervals = [abs(melody[i + 1] - melody[i]) for i in range(len(melody) - 1)]
    metrics["pitch_range"] = max(melody) - min(melody)
    if len(intervals) > 0:
        metrics["interval_mean"] = np.mean(intervals)
        metrics["interval_std"] = np.std(intervals)
        metrics["interval_large_jump_ratio"] = np.mean([i > 5 for i in intervals])
        metrics["dissonance_rate"] = compute_dissonance_rate(intervals)
    return metrics


def compute_dissonance_rate(intervals, dissonant_intervals={1, 2, 6, 10, 11}):
    dissonant = [i % 12 in dissonant_intervals for i in intervals]
    return np.mean(dissonant) if intervals else np.nan


def pypinyin_g2p_phone_without_prosody(text):
    from pypinyin import Style, pinyin
    from pypinyin.style._utils import get_finals, get_initials

    phones = []
    for phone in pinyin(text, style=Style.NORMAL, strict=False):
        initial = get_initials(phone[0], strict=False)
        final = get_finals(phone[0], strict=False)
        if len(initial) != 0:
            if initial in ["x", "y", "j", "q"]:
                if final == "un":
                    final = "vn"
                elif final == "uan":
                    final = "van"
                elif final == "u":
                    final = "v"
            if final == "ue":
                final = "ve"
            phones.append(initial)
            phones.append(final)
        else:
            phones.append(final)
    return phones


def eval_per(audio_path, reference_text, evaluator):
    audio_array, sr = librosa.load(audio_path, sr=16000)
    asr_result = evaluator["asr_pipeline"](
        audio_array, generate_kwargs={"language": "mandarin"}
    )["text"]
    hyp_pinyin = pypinyin_g2p_phone_without_prosody(asr_result)
    ref_pinyin = pypinyin_g2p_phone_without_prosody(reference_text)
    per = evaluator["jiwer"].wer(" ".join(ref_pinyin), " ".join(hyp_pinyin))
    return {"per": per}


def eval_aesthetic(audio_path, predictor):
    score = predictor.forward([{"path": str(audio_path)}])
    return score


# ----------- Main Function -----------


def load_evaluators(config):
    loaded = {}
    if "singmos" in config:
        loaded["singmos"] = init_singmos()
    if "melody" in config:
        loaded["melody"] = init_basic_pitch()
    if "per" in config:
        loaded["per"] = init_per()
    if "aesthetic" in config:
        loaded["aesthetic"] = init_audiobox_aesthetics()
    return loaded


def run_evaluation(audio_path, evaluators, **kwargs):
    results = {}
    if "singmos" in evaluators:
        results.update(eval_singmos(audio_path, evaluators["singmos"]))
    if "per" in evaluators:
        results.update(eval_per(audio_path, kwargs["llm_text"], evaluators["per"]))
    if "melody" in evaluators:
        results.update(eval_melody_metrics(audio_path, evaluators["melody"]))
    if "aesthetic" in evaluators:
        results.update(eval_aesthetic(audio_path, evaluators["aesthetic"])[0])
    return results


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--wav_path", type=str, required=True)
    parser.add_argument("--results_csv", type=str, required=True)
    parser.add_argument("--evaluators", type=str, default="singmos,melody,aesthetic")
    args = parser.parse_args()
    evaluators = load_evaluators(args.evaluators.split(","))
    results = run_evaluation(args.wav_path, evaluators)
    print(results)

    with open(args.results_csv, "a") as f:
        header = "file," + ",".join(results.keys()) + "\n"
        if f.tell() == 0:
            f.write(header)
        else:
            with open(args.results_csv, "r") as f2:
                file_header = f2.readline()
            if file_header != header:
                raise ValueError(f"Header mismatch: {file_header} vs {header}")
        line = (
            ",".join([str(args.wav_path)] + [str(v) for v in results.values()]) + "\n"
        )
        f.write(line)