Spaces:
Sleeping
Sleeping
import os | |
from abc import ABC, abstractmethod | |
import librosa | |
import numpy as np | |
from transformers import pipeline | |
ASR_MODEL_REGISTRY = {} | |
hf_token = os.getenv("HF_TOKEN") | |
class AbstractASRModel(ABC): | |
def __init__( | |
self, model_id: str, device: str = "cpu", cache_dir: str = "cache", **kwargs | |
): | |
print(f"Loading ASR model {model_id}...") | |
self.model_id = model_id | |
self.device = device | |
self.cache_dir = cache_dir | |
def transcribe(self, audio: np.ndarray, audio_sample_rate: int, **kwargs) -> str: | |
pass | |
def register_asr_model(prefix): | |
def wrapper(cls): | |
assert issubclass(cls, AbstractASRModel), f"{cls} must inherit AbstractASRModel" | |
ASR_MODEL_REGISTRY[prefix] = cls | |
return cls | |
return wrapper | |
def get_asr_model(model_id: str, device="cpu", **kwargs) -> AbstractASRModel: | |
for prefix, cls in ASR_MODEL_REGISTRY.items(): | |
if model_id.startswith(prefix): | |
return cls(model_id, device=device, **kwargs) | |
raise ValueError(f"No ASR wrapper found for model: {model_id}") | |
class WhisperASR(AbstractASRModel): | |
def __init__( | |
self, model_id: str, device: str = "cpu", cache_dir: str = "cache", **kwargs | |
): | |
super().__init__(model_id, device, cache_dir, **kwargs) | |
model_kwargs = kwargs.setdefault("model_kwargs", {}) | |
model_kwargs["cache_dir"] = cache_dir | |
self.pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model_id, | |
device=0 if device == "cuda" else -1, | |
token=hf_token, | |
**kwargs, | |
) | |
def transcribe(self, audio: np.ndarray, audio_sample_rate: int, language: str, **kwargs) -> str: | |
if audio_sample_rate != 16000: | |
audio = librosa.resample(audio, orig_sr=audio_sample_rate, target_sr=16000) | |
return self.pipe(audio, generate_kwargs={"language": language}, return_timestamps=False).get("text", "") | |