|
import gradio as gr |
|
import numpy as np |
|
import re |
|
import itertools |
|
import os |
|
import imageio |
|
import imageio.plugins.ffmpeg |
|
import ffmpeg |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
from diffusers_helper.utils import generate_timestamp |
|
from modules.video_queue import JobType |
|
|
|
|
|
|
|
xy_plot_axis_options = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
"Nothing": ["nothing", "", "", True], |
|
"Model type": ["dropdown", ["Original", "F1"], ["Original", "F1"], False], |
|
"End frame influence": ["number", "float", "0.05-0.95[3]", False], |
|
"Latent type": ["dropdown", ["Black", "White", "Noise", "Green Screen"], ["Black", "Noise"], False], |
|
"Prompt add": ["textbox", "", "", True], |
|
"Prompt replace": ["textbox", "", "", True], |
|
"Blend sections": ["number", "int", "3-7 [3]", False], |
|
"Steps": ["number", "int", "15-30 [3]", False], |
|
"Seed": ["number", "int", "1000-10000 [3]", False], |
|
"Use teacache": ["dropdown", [True, False], [True, False], False], |
|
"TeaCache steps": ["number", "int", "5-25 [3]", False], |
|
"TeaCache rel_l1_thresh": ["number", "float", "0.01-0.3 [3]", False], |
|
|
|
"Distilled CFG Scale": ["number", "float", "5-15 [3]", False], |
|
|
|
|
|
} |
|
|
|
text_to_base_keys = { |
|
"Model type": "model_type", |
|
"End frame influence": "end_frame_strength_original", |
|
"Latent type": "latent_type", |
|
"Prompt add": "prompt", |
|
"Prompt replace": "prompt", |
|
"Blend sections": "blend_sections", |
|
"Steps": "steps", |
|
"Seed": "seed", |
|
"Use teacache": "use_teacache", |
|
"TeaCache steps":"teacache_num_steps", |
|
"TeaCache rel_l1_thresh":"teacache_rel_l1_thresh", |
|
"Latent window size": "latent_window_size", |
|
|
|
"Distilled CFG Scale": "gs", |
|
|
|
|
|
} |
|
|
|
def xy_plot_parse_input(text): |
|
text = text.strip() |
|
if ',' in text: |
|
return [x.strip() for x in text.split(",")] |
|
match = re.match(r'^\s*(-?\d*\.?\d*)\s*-\s*(-?\d*\.?\d*)\s*\[\s*(\d+)\s*\]$', text) |
|
if match: |
|
start, end, count = map(float, match.groups()) |
|
result = np.linspace(start, end, int(count)) |
|
if np.allclose(result, np.round(result)): |
|
result = np.round(result).astype(int) |
|
return result.tolist() |
|
return [] |
|
|
|
def xy_plot_process( |
|
job_queue, settings, |
|
model_type, input_image, end_frame_image_original, |
|
end_frame_strength_original, latent_type, |
|
prompt, blend_sections, steps, total_second_length, |
|
resolutionW, resolutionH, seed, randomize_seed, use_teacache, |
|
teacache_num_steps, teacache_rel_l1_thresh, latent_window_size, |
|
cfg, gs, rs, gpu_memory_preservation, mp4_crf, |
|
axis_x_switch, axis_x_value_text, axis_x_value_dropdown, |
|
axis_y_switch, axis_y_value_text, axis_y_value_dropdown, |
|
axis_z_switch, axis_z_value_text, axis_z_value_dropdown, |
|
selected_loras, |
|
*lora_slider_values |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if axis_x_switch == "Nothing" and axis_y_switch == "Nothing" and axis_z_switch == "Nothing": |
|
return "Not selected any axis for plot", gr.update() |
|
if (axis_x_switch == "Nothing" or axis_y_switch == "Nothing") and axis_z_switch != "Nothing": |
|
return "For using Z axis, first use X and Y axis", gr.update() |
|
if axis_x_switch == "Nothing" and axis_y_switch != "Nothing": |
|
return "For using Y axis, first use X axis", gr.update() |
|
if xy_plot_axis_options[axis_x_switch][0] == "dropdown" and len(axis_x_value_dropdown) < 1: |
|
return "No values for axis X", gr.update() |
|
if xy_plot_axis_options[axis_y_switch][0] == "dropdown" and len(axis_y_value_dropdown) < 1: |
|
return "No values for axis Y", gr.update() |
|
if xy_plot_axis_options[axis_z_switch][0] == "dropdown" and len(axis_z_value_dropdown) < 1: |
|
return "No values for axis Z", gr.update() |
|
if not xy_plot_axis_options[axis_x_switch][3]: |
|
if axis_x_switch == axis_y_switch: |
|
return "Axis type on X and Y axis are same, you can't do that generation.<br>Multi axis supported only for \"Prompt add\" and \"Prompt replace\".", gr.update() |
|
if axis_x_switch == axis_z_switch: |
|
return "Axis type on X and Z axis are same, you can't do that generation.<br>Multi axis supported only for \"Prompt add\" and \"Prompt replace\".", gr.update() |
|
if not xy_plot_axis_options[axis_y_switch][3]: |
|
if axis_y_switch == axis_z_switch: |
|
return "Axis type on Y and Z axis are same, you can't do that generation.<br>Multi axis supported only for \"Prompt add\" and \"Prompt replace\".", gr.update() |
|
|
|
base_generator_vars = { |
|
"model_type": model_type, |
|
"input_image": input_image, |
|
"end_frame_image": None, |
|
"end_frame_strength": 1.0, |
|
"input_video": None, |
|
"end_frame_image_original": end_frame_image_original, |
|
"end_frame_strength_original": end_frame_strength_original, |
|
"prompt_text": prompt, |
|
"n_prompt": "", |
|
"seed": seed, |
|
"total_second_length": total_second_length, |
|
"latent_window_size": latent_window_size, |
|
"steps": steps, |
|
"cfg": cfg, |
|
"gs": gs, |
|
"rs": rs, |
|
"use_teacache": use_teacache, |
|
"teacache_num_steps": teacache_num_steps, |
|
"teacache_rel_l1_thresh": teacache_rel_l1_thresh, |
|
"has_input_image": True if input_image is not None else False, |
|
"save_metadata_checked": True, |
|
"blend_sections": blend_sections, |
|
"latent_type": latent_type, |
|
"selected_loras": selected_loras, |
|
"resolutionW": resolutionW, |
|
"resolutionH": resolutionH, |
|
"lora_loaded_names": lora_names, |
|
"lora_values": lora_slider_values |
|
} |
|
|
|
def xy_plot_convert_values(type, value_textbox, value_dropdown): |
|
retVal = [] |
|
if type[0] == "dropdown": |
|
retVal = value_dropdown |
|
elif type[0] == "textbox": |
|
retVal = xy_plot_parse_input(value_textbox) |
|
elif type[0] == "number": |
|
if type[1] == "int": |
|
retVal = [int(float(x)) for x in xy_plot_parse_input(value_textbox)] |
|
else: |
|
retVal = [float(x) for x in xy_plot_parse_input(value_textbox)] |
|
return retVal |
|
prompt_replace_initial_values = {} |
|
all_axis_values = { |
|
axis_x_switch+" -> X": xy_plot_convert_values(xy_plot_axis_options[axis_x_switch], axis_x_value_text, axis_x_value_dropdown) |
|
} |
|
if axis_x_switch == "Prompt replace": |
|
prompt_replace_initial_values["X"] = all_axis_values[axis_x_switch+" -> X"][0] |
|
if prompt_replace_initial_values["X"] not in base_generator_vars["prompt_text"]: |
|
return "Prompt for replacing in X axis not present in generation prompt", gr.update() |
|
if axis_y_switch != "Nothing": |
|
all_axis_values[axis_y_switch+" -> Y"] = xy_plot_convert_values(xy_plot_axis_options[axis_y_switch], axis_y_value_text, axis_y_value_dropdown) |
|
if axis_y_switch == "Prompt replace": |
|
prompt_replace_initial_values["Y"] = all_axis_values[axis_y_switch+" -> Y"][0] |
|
if prompt_replace_initial_values["Y"] not in base_generator_vars["prompt_text"]: |
|
return "Prompt for replacing in Y axis not present in generation prompt", gr.update() |
|
if axis_z_switch != "Nothing": |
|
all_axis_values[axis_z_switch+" -> Z"] = xy_plot_convert_values(xy_plot_axis_options[axis_z_switch], axis_z_value_text, axis_z_value_dropdown) |
|
if axis_z_switch == "Prompt replace": |
|
prompt_replace_initial_values["Z"] = all_axis_values[axis_z_switch+" -> Z"][0] |
|
if prompt_replace_initial_values["Z"] not in base_generator_vars["prompt_text"]: |
|
return "Prompt for replacing in Z axis not present in generation prompt", gr.update() |
|
|
|
active_axes = list(all_axis_values.keys()) |
|
value_lists = [all_axis_values[axis] for axis in active_axes] |
|
output_generator_vars = [] |
|
|
|
combintion_plot = itertools.product(*value_lists) |
|
for combo in combintion_plot: |
|
vars_copy = base_generator_vars.copy() |
|
for axis, value in zip(active_axes, combo): |
|
splitted_axis_name = axis.split(" -> ") |
|
if splitted_axis_name[0] == "Prompt add": |
|
vars_copy["prompt_text"] = vars_copy["prompt_text"] + " " + str(value) |
|
elif splitted_axis_name[0] == "Prompt replace": |
|
orig_copy_prompt_text = vars_copy["prompt_text"] |
|
vars_copy["prompt_text"] = orig_copy_prompt_text.replace(prompt_replace_initial_values[splitted_axis_name[1]], str(value)) |
|
else: |
|
vars_copy[text_to_base_keys[splitted_axis_name[0]]] = value |
|
vars_copy[splitted_axis_name[1]+"_axis_on_plot"] = str(value) |
|
|
|
worker_params = {k: v for k, v in vars_copy.items() if k not in ["X_axis_on_plot", "Y_axis_on_plot", "Z_axis_on_plot"]} |
|
output_generator_vars.append(worker_params) |
|
|
|
|
|
|
|
|
|
|
|
job_queue.add_job( |
|
params=base_generator_vars, |
|
job_type=JobType.GRID, |
|
child_job_params_list=output_generator_vars |
|
) |
|
return "Grid job added to the queue.", gr.update(visible=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_dir_setting = settings.get("output_dir", "outputs") |
|
mp4_crf_setting = settings.get("mp4_crf", 16) |
|
|
|
|
|
def create_xy_plot_ui(lora_names, default_prompt, DUMMY_LORA_NAME): |
|
""" |
|
Creates the Gradio UI for the XY Plot functionality. |
|
Returns a dictionary of key components to be used by the main interface. |
|
""" |
|
with gr.Group(visible=False) as xy_group: |
|
with gr.Row(): |
|
xy_plot_model_type = gr.Radio( |
|
["Original", "F1"], |
|
label="Model Type", |
|
value="F1", |
|
info="Select which model to use for generation" |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
xy_plot_input_image = gr.Image( |
|
sources='upload', |
|
type="numpy", |
|
label="Image (optional)", |
|
height=420, |
|
image_mode="RGB", |
|
elem_classes="contain-image" |
|
) |
|
with gr.Column(scale=1): |
|
xy_plot_end_frame_image_original = gr.Image( |
|
sources='upload', |
|
type="numpy", |
|
label="End Frame (Optional)", |
|
height=420, |
|
elem_classes="contain-image", |
|
image_mode="RGB", |
|
show_download_button=False, |
|
show_label=True, |
|
container=True |
|
) |
|
with gr.Group(): |
|
xy_plot_end_frame_strength_original = gr.Slider( |
|
label="End Frame Influence", |
|
minimum=0.05, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.05, |
|
info="Controls how strongly the end frame guides the generation. 1.0 is full influence." |
|
) |
|
with gr.Accordion("Latent Image Options", open=False): |
|
xy_plot_latent_type = gr.Dropdown( |
|
["Black", "White", "Noise", "Green Screen"], |
|
label="Latent Image", |
|
value="Black", |
|
info="Used as a starting point if no image is provided" |
|
) |
|
xy_plot_prompt = gr.Textbox(label="Prompt", value=default_prompt) |
|
with gr.Accordion("Prompt Parameters", open=False): |
|
xy_plot_blend_sections = gr.Slider( |
|
minimum=0, maximum=10, value=4, step=1, |
|
label="Number of sections to blend between prompts" |
|
) |
|
with gr.Accordion("Generation Parameters", open=True): |
|
with gr.Row(): |
|
xy_plot_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=5, step=1) |
|
xy_plot_total_second_length = gr.Slider(label="Video Length (Seconds)", minimum=0.1, maximum=120, value=1, step=0.1) |
|
with gr.Row(): |
|
xy_plot_seed = gr.Number(label="Seed", value=31337, precision=0) |
|
xy_plot_randomize_seed = gr.Checkbox(label="Randomize", value=False, info="Generate a new random seed for each job") |
|
with gr.Row("LoRAs"): |
|
xy_plot_lora_selector = gr.Dropdown( |
|
choices=lora_names, |
|
label="Select LoRAs to Load", |
|
multiselect=True, |
|
value=[], |
|
info="Select one or more LoRAs to use for this job" |
|
) |
|
xy_plot_lora_sliders = {} |
|
for lora in lora_names: |
|
xy_plot_lora_sliders[lora] = gr.Slider( |
|
minimum=0.0, maximum=2.0, value=1.0, step=0.01, |
|
label=f"{lora} Weight", visible=False, interactive=True |
|
) |
|
with gr.Accordion("Advanced Parameters", open=False): |
|
with gr.Row("TeaCache"): |
|
xy_plot_use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.') |
|
xy_plot_teacache_num_steps = gr.Slider(label="TeaCache steps", minimum=1, maximum=50, step=1, value=25, visible=True, info='How many intermediate sections to keep in the cache') |
|
xy_plot_teacache_rel_l1_thresh = gr.Slider(label="TeaCache rel_l1_thresh", minimum=0.01, maximum=1.0, step=0.01, value=0.15, visible=True, info='Relative L1 Threshold') |
|
xy_plot_latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=True, info='Change at your own risk, very experimental') |
|
xy_plot_cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) |
|
xy_plot_gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01) |
|
xy_plot_rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) |
|
xy_plot_gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=1, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.") |
|
with gr.Accordion("Output Parameters", open=False): |
|
xy_plot_mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ") |
|
with gr.Accordion("Plot Parameters", open=True): |
|
def xy_plot_axis_change(updated_value_type): |
|
if xy_plot_axis_options[updated_value_type][0] == "textbox" or xy_plot_axis_options[updated_value_type][0] == "number": |
|
return gr.update(visible=True, value=xy_plot_axis_options[updated_value_type][2]), gr.update(visible=False, value=[], choices=[]) |
|
elif xy_plot_axis_options[updated_value_type][0] == "dropdown": |
|
return gr.update(visible=False), gr.update(visible=True, value=xy_plot_axis_options[updated_value_type][2], choices=xy_plot_axis_options[updated_value_type][1]) |
|
else: |
|
return gr.update(visible=False), gr.update(visible=False, value=[], choices=[]) |
|
with gr.Row(): |
|
xy_plot_axis_x_switch = gr.Dropdown(label="X axis type for plotting", choices=list(xy_plot_axis_options.keys())) |
|
xy_plot_axis_x_value_text = gr.Textbox(label="X axis comma separated text", visible=False) |
|
xy_plot_axis_x_value_dropdown = gr.CheckboxGroup(label="X axis values", visible=False) |
|
with gr.Row(): |
|
xy_plot_axis_y_switch = gr.Dropdown(label="Y axis type for plotting", choices=list(xy_plot_axis_options.keys())) |
|
xy_plot_axis_y_value_text = gr.Textbox(label="Y axis comma separated text", visible=False) |
|
xy_plot_axis_y_value_dropdown = gr.CheckboxGroup(label="Y axis values", visible=False) |
|
with gr.Row(visible=False): |
|
xy_plot_axis_z_switch = gr.Dropdown(label="Z axis type for plotting", choices=list(xy_plot_axis_options.keys())) |
|
xy_plot_axis_z_value_text = gr.Textbox(label="Z axis comma separated text", visible=False) |
|
xy_plot_axis_z_value_dropdown = gr.CheckboxGroup(label="Z axis values", visible=False) |
|
|
|
xy_plot_status = gr.HTML("") |
|
xy_plot_output = gr.Video(autoplay=True, loop=True, sources=[], height=256, visible=False) |
|
|
|
|
|
|
|
xy_plot_process_btn = gr.Button("Submit", visible=False) |
|
|
|
|
|
xy_plot_use_teacache.change(lambda enabled: (gr.update(visible=enabled), gr.update(visible=enabled)), inputs=xy_plot_use_teacache, outputs=[xy_plot_teacache_num_steps, xy_plot_teacache_rel_l1_thresh]) |
|
xy_plot_axis_x_switch.change(fn=xy_plot_axis_change, inputs=[xy_plot_axis_x_switch], outputs=[xy_plot_axis_x_value_text, xy_plot_axis_x_value_dropdown]) |
|
xy_plot_axis_y_switch.change(fn=xy_plot_axis_change, inputs=[xy_plot_axis_y_switch], outputs=[xy_plot_axis_y_value_text, xy_plot_axis_y_value_dropdown]) |
|
xy_plot_axis_z_switch.change(fn=xy_plot_axis_change, inputs=[xy_plot_axis_z_switch], outputs=[xy_plot_axis_z_value_text, xy_plot_axis_z_value_dropdown]) |
|
|
|
def xy_plot_update_lora_sliders(selected_loras): |
|
updates = [] |
|
actual_selected_loras_for_display = [lora for lora in selected_loras if lora != DUMMY_LORA_NAME] |
|
updates.append(gr.update(value=actual_selected_loras_for_display)) |
|
|
|
for lora_name_key in lora_names: |
|
if lora_name_key == DUMMY_LORA_NAME: |
|
updates.append(gr.update(visible=False)) |
|
else: |
|
updates.append(gr.update(visible=(lora_name_key in actual_selected_loras_for_display))) |
|
return updates |
|
|
|
xy_plot_lora_selector.change( |
|
fn=xy_plot_update_lora_sliders, |
|
inputs=[xy_plot_lora_selector], |
|
outputs=[xy_plot_lora_selector] + [xy_plot_lora_sliders[lora] for lora in lora_names if lora in xy_plot_lora_sliders] |
|
) |
|
|
|
|
|
components = { |
|
"group": xy_group, |
|
"status": xy_plot_status, |
|
"output": xy_plot_output, |
|
"process_btn": xy_plot_process_btn, |
|
|
|
"model_type": xy_plot_model_type, |
|
"input_image": xy_plot_input_image, |
|
"end_frame_image_original": xy_plot_end_frame_image_original, |
|
"end_frame_strength_original": xy_plot_end_frame_strength_original, |
|
"latent_type": xy_plot_latent_type, |
|
"prompt": xy_plot_prompt, |
|
"blend_sections": xy_plot_blend_sections, |
|
"steps": xy_plot_steps, |
|
"total_second_length": xy_plot_total_second_length, |
|
"seed": xy_plot_seed, |
|
"randomize_seed": xy_plot_randomize_seed, |
|
"use_teacache": xy_plot_use_teacache, |
|
"teacache_num_steps": xy_plot_teacache_num_steps, |
|
"teacache_rel_l1_thresh": xy_plot_teacache_rel_l1_thresh, |
|
"latent_window_size": xy_plot_latent_window_size, |
|
"cfg": xy_plot_cfg, |
|
"gs": xy_plot_gs, |
|
"rs": xy_plot_rs, |
|
"gpu_memory_preservation": xy_plot_gpu_memory_preservation, |
|
"mp4_crf": xy_plot_mp4_crf, |
|
"axis_x_switch": xy_plot_axis_x_switch, |
|
"axis_x_value_text": xy_plot_axis_x_value_text, |
|
"axis_x_value_dropdown": xy_plot_axis_x_value_dropdown, |
|
"axis_y_switch": xy_plot_axis_y_switch, |
|
"axis_y_value_text": xy_plot_axis_y_value_text, |
|
"axis_y_value_dropdown": xy_plot_axis_y_value_dropdown, |
|
"axis_z_switch": xy_plot_axis_z_switch, |
|
"axis_z_value_text": xy_plot_axis_z_value_text, |
|
"axis_z_value_dropdown": xy_plot_axis_z_value_dropdown, |
|
"lora_selector": xy_plot_lora_selector, |
|
"lora_sliders": xy_plot_lora_sliders, |
|
} |
|
return components |