Spaces:
Configuration error
Configuration error
File size: 9,816 Bytes
6858cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import (
AutoConfig,
AutoModelForCausalLM,
Qwen3Config,
Qwen3ForCausalLM,
Qwen3Model,
)
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutputWithPast
from blip3o.model.blip3o_arch import blip3oMetaForCausalLM, blip3oMetaModel
from diffusers.training_utils import compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers import DDPMScheduler, DDIMScheduler, LCMScheduler, FlowMatchEulerDiscreteScheduler, DPMSolverMultistepScheduler
import numpy as np
from tqdm import tqdm
import PIL
from blip3o.utils import rank0_print
def numpy_to_pil(images: np.ndarray):
"""
Convert a NumPy array of shape (batch, height, width, channels) to a list of PIL Images.
"""
pil_images = []
for img in images:
img_uint8 = (img * 255).round().astype("uint8")
if img_uint8.shape[2] == 1:
img_uint8 = img_uint8[..., 0]
pil_images.append(PIL.Image.fromarray(img_uint8))
return pil_images
class blip3oQwenConfig(Qwen3Config):
model_type = "blip3o_qwen_grpo"
class blip3oQwenModel(blip3oMetaModel, Qwen3Model):
config_class = blip3oQwenConfig
def __init__(self, config: Qwen3Config):
super(blip3oQwenModel, self).__init__(config)
class blip3oQwenForGRPOLM(Qwen3ForCausalLM, blip3oMetaForCausalLM):
config_class = blip3oQwenConfig
def __init__(self, config):
Qwen3ForCausalLM.__init__(self, config)
config.model_type = "blip3o_qwen"
config.rope_scaling = None
self.model = blip3oQwenModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def get_sigmas(self, timesteps, device, n_dim=4, dtype=torch.float32):
sigmas = self.model.noise_scheduler.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = self.model.noise_scheduler.timesteps.to(device)
timesteps = timesteps.to(device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def mask_drop(self, latents, drop_prob=0.1):
if drop_prob <= 0:
return latents
mask = torch.bernoulli(torch.zeros(latents.shape[0], device=latents.device, dtype=latents.dtype) + drop_prob)
while len(mask.shape) < len(latents.shape):
mask = mask.unsqueeze(-1)
mask = 1 - mask # need to flip 0 <-> 1
return latents * mask
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
modalities: Optional[List[str]] = ["image"],
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes=image_sizes)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
if images is not None:
inputs["images"] = images
if image_sizes is not None:
inputs["image_sizes"] = image_sizes
return inputs
@torch.no_grad()
def decode_latents(self, latents, normalize=True, return_tensor=False):
if self.model.sana_vae is not None:
latents = latents / self.model.sana_vae.config.scaling_factor
if "shift_factor" in self.model.sana_vae.config and self.model.sana_vae.config.shift_factor is not None:
latents = latents + self.model.sana_vae.config.shift_factor
samples = self.model.sana_vae.decode(latents).sample
else:
samples = latents
if normalize:
samples = (samples / 2 + 0.5).clamp(0, 1)
else:
samples = samples.clamp(-1, 1)
if return_tensor:
return samples
samples = samples.cpu().permute(0, 2, 3, 1).float().numpy()
samples = numpy_to_pil(samples)
return samples
@torch.no_grad()
def generate_images(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
max_new_tokens: Optional[torch.Tensor] = None,
temperature: Optional[torch.Tensor] = None,
top_p: Optional[torch.Tensor] = None,
top_k: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
modalities: Optional[List[str]] = ["image"],
guidance_scale: float = 2.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
num_inference_steps: int = 30,
num_images_per_prompt: int = 1,
return_tensor=False,
enable_progress_bar=False,
**kwargs,
):
position_ids = kwargs.pop("position_ids", None)
# attention_mask = (inputs != -100).long()
gen_ids = super(blip3oQwenForGRPOLM, self).generate(
input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=1.0,
attention_mask=attention_mask,
)
# breakpoint()
with torch.no_grad():
outs = self.model(
input_ids = gen_ids,
output_hidden_states = True,
return_dict = True,
)
hidden_states = outs.hidden_states[-1]
start_pos = (gen_ids == self.config.image_start_tag_id).float().argmax(dim=1)
end_pos = (gen_ids == self.config.image_end_tag_id).float().argmax(dim=1)
selected_hidden_states = []
for b in range(hidden_states.size(0)):
start = start_pos[b].item() + 1
# end = end_pos[b].item()
selected_hidden_states.append(hidden_states[b, start:, :])
pred_latent = torch.stack(selected_hidden_states, dim=0)
img_hidden_states_null = torch.zeros_like(pred_latent)
pred_latent = torch.cat([img_hidden_states_null, pred_latent], 0)
## sample images from here
device = next(self.parameters()).device
dtype = next(self.parameters()).dtype
bsz = len(pred_latent) // 2
# latent_size = self.config.input_size
latent_size = 32
latent_channels = self.model.sana.config.in_channels
latents = randn_tensor(
shape=(bsz * num_images_per_prompt, latent_channels, latent_size, latent_size),
generator=None,
device=device,
dtype=torch.bfloat16,
)
# set step values
if isinstance(self.model.noise_scheduler, FlowMatchEulerDiscreteScheduler):
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
self.model.noise_scheduler.set_timesteps(num_inference_steps, sigmas=sigmas)
else:
self.model.noise_scheduler.set_timesteps(num_inference_steps)
# pred_latent = torch.cat([pred_latent] * 2)
# Convert to float32 before saving
for t in tqdm(self.model.noise_scheduler.timesteps, desc="Sampling images", disable=not enable_progress_bar):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = latent_model_input.to(pred_latent.dtype)
if hasattr(self.model.noise_scheduler.timesteps, "scale_model_input"):
latent_model_input = self.model.noise_scheduler.scale_model_input(latent_model_input, t)
# predict noise model_output
noise_pred = self.model.sana(
hidden_states=latent_model_input,
encoder_hidden_states=self.model.diffusion_connector(pred_latent),
timestep=t.unsqueeze(0).expand(latent_model_input.shape[0]).to(latents.device),
encoder_attention_mask=None
).sample
noise_pred_uncond, noise_pred= noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
# compute previous image: x_t -> x_t-1
latents = self.model.noise_scheduler.step(noise_pred, t, latents).prev_sample
samples = self.decode_latents(latents.to(self.model.sana_vae.dtype) if self.model.sana_vae is not None else latents, return_tensor=return_tensor)
return gen_ids, samples
AutoConfig.register("blip3o_qwen_grpo", blip3oQwenConfig)
AutoModelForCausalLM.register(blip3oQwenConfig, blip3oQwenForGRPOLM)
|