File size: 11,140 Bytes
6858cdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import logging
import pathlib
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import deepspeed
import torch
import transformers
from transformers import AutoConfig, AutoTokenizer

from blip3o.data import make_supervised_data_module
from blip3o.model import blip3oQwenForCausalLM
from blip3o.train.blip3o_trainer import blip3oTrainer
from blip3o.utils import rank0_print
from tabulate import tabulate

torch.multiprocessing.set_sharing_strategy("file_system")

local_rank = None

@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
    diffusion_name_or_path: Optional[str] = field(default="facebook/opt-125m")
    model_class_name: Optional[str] = field(default=None, metadata={"help": "Used to init model class, format is XXXXForCausalLM. e.g. currently XXXX is chosen from blip3oLlama, blip3oMixtral, blip3oMistral, Llama"})
    mm_tunable_parts: Optional[str] = field(default="mm_language_model")
    version: Optional[str] = field(default="v0")
    vision_tower: Optional[str] = field(default=None)
    vision_tower_pretrained: Optional[str] = field(default=None)  # default to the last layer
    mm_vision_select_layer: Optional[int] = field(default=-1)  # default to the last layer
    mm_use_im_start_end: bool = field(default=False)
    mm_patch_merge_type: Optional[str] = field(default="flat")
    mm_vision_select_feature: Optional[str] = field(default="patch")
    rope_scaling_factor: Optional[float] = field(default=None)
    rope_scaling_type: Optional[str] = field(default=None)
    use_pos_skipping: Optional[bool] = field(default=False)
    pos_skipping_range: Optional[int] = field(default=4096)
    delay_load: Optional[bool] = field(default=True)
    num_image_tokens: Optional[int] = field(default=-1)
    image_token_format: str = field(default="<I{}>")
    num_scale_tokens: Optional[int] = field(default=3)
    scale_token_format: str = field(default="<S{}>")
    load_embeddings_from_vision: Optional[bool] = field(default=False)

@dataclass
class DataArguments:
    data_path: str = field(default=None, metadata={"help": "Path to the training data, in blip3o's instruction.json format. Supporting multiple json files via /path/to/{a,b,c}.json"})
    lazy_preprocess: bool = False
    is_multimodal: bool = False
    early_mix_text: bool = False
    image_folder: Optional[str] = field(default=None)
    image_aspect_ratio: str = "square"
    dataset_cls: str = field(default="blip3o")


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    remove_unused_columns: bool = field(default=False)
    mpt_attn_impl: Optional[str] = field(default="triton")
    model_max_length: int = field(
        default=4096,
        metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
    )
    mm_vision_tower_lr: Optional[float] = None
    group_by_varlen: bool = field(default=False)
    group_by_modality_length: bool = field(default=False)
    group_by_modality_length_auto: bool = field(default=False)
    auto_find_batch_size: bool = field(default=False)
    gradient_checkpointing: bool = field(default=True)
    attn_implementation: str = field(default="flash_attention_2", metadata={"help": "Use transformers attention implementation."})
    dispatch_batches: Optional[bool] = field(default=None)
    split_batches: Optional[bool] = field(default=None)


def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
    trainer.accelerator.wait_for_everyone()
    torch.cuda.synchronize()
    
    if trainer.deepspeed:
        trainer.save_model(output_dir)
        return

    state_dict = trainer.model.state_dict()
    if trainer.args.should_save:
        cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa


def get_model(model_args, training_args):
    customized_kwargs = {}
    overwrite_config = {}

    cfg_pretrained = AutoConfig.from_pretrained(model_args.model_name_or_path)

    if model_args.use_pos_skipping is not None and model_args.pos_skipping_range is not None:
        overwrite_config["use_pos_skipping"] = model_args.use_pos_skipping
        overwrite_config["pos_skipping_range"] = model_args.pos_skipping_range

    if model_args.rope_scaling_factor is not None and model_args.rope_scaling_type is not None:
        overwrite_config["rope_scaling"] = {
            "factor": model_args.rope_scaling_factor,
            "type": model_args.rope_scaling_type,
        }
        if training_args.model_max_length is None:
            training_args.model_max_length = cfg_pretrained.max_position_embeddings * model_args.rope_scaling_factor
            overwrite_config["max_sequence_length"] = training_args.model_max_length
        assert training_args.model_max_length == int(cfg_pretrained.max_position_embeddings * model_args.rope_scaling_factor), print(
            f"model_max_length: {training_args.model_max_length}, max_position_embeddings: {cfg_pretrained.max_position_embeddings}, rope_scaling_factor: {model_args.rope_scaling_factor}"
        )

    if overwrite_config:
        assert cfg_pretrained is not None, "cfg_pretrained is None"

        rank0_print(f"Overwriting config with {overwrite_config}")
        for k, v in overwrite_config.items():
            setattr(cfg_pretrained, k, v)
        customized_kwargs["config"] = cfg_pretrained

    model = blip3oQwenForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        attn_implementation=training_args.attn_implementation,
        torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
        low_cpu_mem_usage=False,
        **customized_kwargs)
    return model


def train():
    global local_rank

    parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    local_rank = training_args.local_rank

    model = get_model(model_args, training_args)
    model.config.use_cache = False
    if model_args.rope_scaling_factor is not None and model_args.rope_scaling_type is not None:
        model.config.rope_scaling = {
            "factor": model_args.rope_scaling_factor,
            "type": model_args.rope_scaling_type,
        }

    if training_args.gradient_checkpointing:
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:
            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)
            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
            
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right")
    if tokenizer.unk_token is not None:
        tokenizer.pad_token = tokenizer.unk_token

    if model_args.vision_tower is  None:
        model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp)

        vision_tower = model.get_vision_tower()
        vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)

        data_args.image_processor = vision_tower.image_processor
        data_args.is_multimodal = True

        model.config.image_aspect_ratio = data_args.image_aspect_ratio
        model.config.diffusion_name_or_path = model_args.diffusion_name_or_path

        
        model.config.tokenizer_padding_side = tokenizer.padding_side
        model.config.tokenizer_model_max_length = tokenizer.model_max_length

        model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
        model.config.mm_vision_tower_lr = training_args.mm_vision_tower_lr
        training_args.use_im_start_end = model_args.mm_use_im_start_end

        model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)

        ### Deciding train which part of the model
        rank0_print(f"Using mm_tunable_parts: {model_args.mm_tunable_parts}")
        model.config.mm_tunable_parts = training_args.mm_tunable_parts = model_args.mm_tunable_parts
        # Set the entire model to not require gradients by default
        model.requires_grad_(False)
        vision_tower.requires_grad_(False)
        vision_tower.eval()
        # Parse the mm_tunable_parts to decide which parts to unfreeze
        tunable_parts = model_args.mm_tunable_parts.split(",")
        if "mm_vision_tower" in tunable_parts:
            for name, param in model.named_parameters():
                if "vision_tower" in name:
                    param.requires_grad_(True)
        if "mm_language_model" in tunable_parts:
            for name, param in model.named_parameters():
                if "vision_tower" not in name:
                    param.requires_grad_(True)
        if 'mm_embedding' in tunable_parts:
            for name, param in model.named_parameters():
                if "embed_tokens" in name or 'lm_head' in name:
                    param.requires_grad_(True)

        ## freeze sana except the caption projection
        for name, param in model.named_parameters():
            if "sana" in name:
                param.requires_grad_(False)

        for name, param in model.named_parameters():
            if "caption" in name:
                param.requires_grad_(True)   
                



        total_params = sum(p.ds_numel if hasattr(p, "ds_numel") else p.numel() for p in model.parameters())
        trainable_params = sum(p.ds_numel if hasattr(p, "ds_numel") else p.numel() for p in model.parameters() if p.requires_grad)
        rank0_print(f"Total parameters: ~{total_params/1e6:.2f} MB)")
        rank0_print(f"Trainable parameters: ~{trainable_params/1e6:.2f} MB)")
        for name, p in model.named_parameters():
            if p.requires_grad:
                rank0_print(f"Trainable parameter: {name}")
        
    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
    trainer = blip3oTrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)


    if trainer.is_world_process_zero():
        stat = []
        for i, (n, p) in enumerate(trainer.model.named_parameters()):
            stat.append([i, n, p.shape, p.requires_grad])
        print(tabulate(stat, headers=["idx", "name", "shape", "trainable"]))

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    model.config.use_cache = True
    safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
    rank0_print(f"Model saved to {training_args.output_dir}")


if __name__ == "__main__":
    train()