Spaces:
Configuration error
Configuration error
import os | |
import random | |
from abc import ABC, abstractmethod | |
import torch | |
import torch.nn as nn | |
from blip3o.constants import ( | |
DEFAULT_IM_END_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
IGNORE_INDEX, | |
IMAGE_TOKEN_INDEX, | |
) | |
from blip3o.utils import rank0_print | |
from .multimodal_encoder.builder import build_vision_tower | |
from .multimodal_decoder.builder import build_sana, build_vae | |
from diffusers.models.normalization import RMSNorm | |
from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaTransformer2DModel | |
import math | |
class blip3oMetaModel: | |
def __init__(self, config): | |
super(blip3oMetaModel, self).__init__(config) | |
if hasattr(config, "mm_vision_tower"): | |
delay_load = getattr(config, "delay_load", False) | |
self.vision_tower = build_vision_tower(config, delay_load=delay_load) | |
self.sana = build_sana(config) | |
self.sana_vae = build_vae(config) | |
norm = RMSNorm(2304, eps=1e-5, elementwise_affine=True) | |
with torch.no_grad(): | |
norm.weight.fill_(math.sqrt(5.5)) | |
self.diffusion_connector = nn.Sequential( | |
nn.Linear(config.hidden_size, 2304), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(2304, 2304), | |
norm, | |
) | |
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(config.diffusion_name_or_path, subfolder="scheduler") | |
self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(config.diffusion_name_or_path, subfolder="scheduler") | |
def get_vision_tower(self): | |
vision_tower = getattr(self, "vision_tower", None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def get_sana(self): | |
sana = getattr(self, 'sana', None) | |
if type(sana) is list: | |
sana = sana[0] | |
if sana is not None: | |
sana.to(self.device) | |
return sana | |
def get_sana_vae(self): | |
sana_vae = getattr(self, 'sana_vae', None) | |
if type(sana_vae) is list: | |
sana_vae = sana_vae[0] | |
if sana_vae is not None: | |
sana_vae.to(self.device) | |
return sana_vae | |
def initialize_vision_modules(self, model_args, fsdp=None): | |
vision_tower = model_args.vision_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
mm_patch_merge_type = model_args.mm_patch_merge_type | |
self.config.mm_vision_tower = vision_tower | |
self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "") | |
if self.get_vision_tower() is None: | |
vision_tower = build_vision_tower(model_args) | |
if fsdp is not None and len(fsdp) > 0: | |
self.vision_tower = [vision_tower] | |
else: | |
self.vision_tower = vision_tower | |
else: | |
if fsdp is not None and len(fsdp) > 0: | |
vision_tower = self.vision_tower[0] | |
else: | |
vision_tower = self.vision_tower | |
vision_tower.load_model() | |
if self.get_sana() is None: | |
sana = build_sana(model_args) | |
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_args.diffusion_name_or_path, subfolder="scheduler" | |
) | |
self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_args.diffusion_name_or_path, subfolder="scheduler") | |
if fsdp is not None and len(fsdp) > 0: | |
self.sana = [sana] | |
else: | |
self.sana = sana | |
else: | |
if fsdp is not None and len(fsdp) > 0: | |
sana = self.sana[0] | |
else: | |
sana = self.sana | |
if self.get_sana_vae() is None: | |
sana_vae = build_vae(model_args) | |
if fsdp is not None and len(fsdp) > 0: | |
self.sana_vae = [sana_vae] | |
else: | |
self.sana_vae = sana_vae | |
else: | |
if fsdp is not None and len(fsdp) > 0: | |
sana_vae = self.sana_vae[0] | |
else: | |
sana_vae = self.sana_vae | |
if getattr(self, 'diffusion_connector', None) is None: | |
norm = RMSNorm(2304, eps=1e-5, elementwise_affine=True) | |
with torch.no_grad(): | |
norm.weight.fill_(math.sqrt(5.5)) | |
self.diffusion_connector = nn.Sequential( | |
nn.Linear(self.config.hidden_size, 2304), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(2304, 2304), | |
norm, | |
) | |
else: | |
for p in self.diffusion_connector.parameters(): | |
p.requires_grad = True | |
self.config.use_mm_proj = True | |
self.config.mm_hidden_size = vision_tower.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
self.config.mm_patch_merge_type = mm_patch_merge_type | |
class blip3oMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def encode_images(self, images, modalities, pool_scale=None): | |
image_features = self.get_model().get_vision_tower()(images, pool_scale=pool_scale) | |
assert 'tokens' in image_features | |
image_tokens = image_features['tokens'] | |
# discrete features for gen related tasks | |
image_tokens = image_tokens + self.config.image_start_token_id | |
image_features = self.get_model().embed_tokens(image_tokens) | |
return {'image_features': image_features, 'image_tokens': image_tokens} | |
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=None, image_sizes=None): | |
vision_tower = self.get_vision_tower() | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
return input_ids, position_ids, attention_mask, past_key_values, None, labels | |
if not isinstance(modalities, list): | |
modalities = [modalities] | |
# random scale for training, but scale 1 for understanding evaluation | |
if self.training: | |
pool_scale = random.choice(vision_tower.pool_scales) | |
else: | |
pool_scale = 1 | |
if type(images) is list or images.ndim == 5: | |
if type(images) is list: | |
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] | |
images_list = [] | |
for image in images: | |
if image.ndim == 4: | |
images_list.append(image) | |
else: | |
images_list.append(image.unsqueeze(0)) | |
concat_images = torch.cat([image for image in images_list], dim=0) | |
split_sizes = [image.shape[0] for image in images_list] | |
encoded_image_features = self.encode_images(concat_images, modalities, pool_scale=pool_scale) | |
image_tokens = encoded_image_features['image_tokens'] | |
encoded_image_features = encoded_image_features['image_features'] | |
# This is a list, each element is [num_images, patch * patch, dim] | |
encoded_image_features = torch.split(encoded_image_features, split_sizes) | |
if image_tokens is not None: | |
image_tokens = torch.split(image_tokens, split_sizes) | |
image_features = [] | |
for idx, image_feat in enumerate(encoded_image_features): | |
image_features.append(image_feat) | |
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat") | |
if mm_patch_merge_type == "flat": | |
image_features = [x.flatten(0, 1) for x in image_features] | |
if image_tokens is not None: | |
image_tokens = [x.flatten(0, 1) for x in image_tokens] | |
else: | |
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") | |
else: | |
image_features = self.encode_images(images, modalities, pool_scale=pool_scale) | |
image_tokens = image_features['image_tokens'] | |
image_features = image_features['image_features'] | |
# Let's just add dummy tensors if they do not exist, | |
# it is a headache to deal with None all the time. | |
# But it is not ideal, and if you have a better idea, | |
# please open an issue / submit a PR, thanks. | |
breakpoint() | |
_labels = labels | |
_position_ids = position_ids | |
_attention_mask = attention_mask | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) | |
else: | |
attention_mask = attention_mask.bool() | |
if position_ids is None: | |
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) | |
if labels is None: | |
labels = torch.full_like(input_ids, IGNORE_INDEX) | |
# remove the padding using attention_mask -- FIXME | |
_input_ids = input_ids | |
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] | |
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] | |
new_input_embeds = [] | |
new_labels = [] | |
cur_image_idx = 0 | |
# rank_print("Inserting Images embedding") | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() | |
# rank0_print(num_images) | |
if num_images == 0: | |
# cur_image_features = image_features[cur_image_idx] | |
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) | |
# cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_input_embeds_1[0:0]], dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
new_labels.append(labels[batch_idx]) | |
cur_image_idx += 1 | |
continue | |
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] | |
cur_input_ids_noim = [] | |
cur_labels = labels[batch_idx] | |
cur_labels_noim = [] | |
for i in range(len(image_token_indices) - 1): | |
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
split_sizes = [x.shape[0] for x in cur_labels_noim] | |
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) | |
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) | |
cur_new_input_embeds = [] | |
cur_new_labels = [] | |
for i in range(num_images + 1): | |
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) | |
cur_new_labels.append(cur_labels_noim[i]) | |
if i < num_images: | |
try: | |
cur_image_features = image_features[cur_image_idx] | |
except IndexError: | |
rank0_print("Error image_features[cur_image_idx]!") | |
break | |
# [Assisant\n<start_image><image><end_image>] | |
if self.config.image_start_tag_id == cur_labels_noim[i][-1] and image_tokens is not None: | |
cur_image_tokens = image_tokens[cur_image_idx] | |
if pool_scale is not None: | |
pool_token = self.config.scale_start_token_id + pool_scale - 1 | |
pool_token = torch.tensor([pool_token], dtype=torch.long, device=cur_image_tokens.device) | |
cur_image_tokens = torch.cat([pool_token, cur_image_tokens]) | |
pool_embed = self.get_model().embed_tokens(pool_token) | |
cur_image_features = torch.cat([pool_embed, cur_image_features]) | |
else: | |
cur_image_tokens = torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype) | |
cur_image_idx += 1 | |
cur_new_input_embeds.append(cur_image_features) | |
cur_new_labels.append(cur_image_tokens) | |
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds) | |
cur_new_labels = torch.cat(cur_new_labels) | |
new_input_embeds.append(cur_new_input_embeds) | |
new_labels.append(cur_new_labels) | |
# Truncate sequences to max length as image embeddings can make the sequence longer | |
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None) | |
new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)] | |
new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)] | |
# Combine them | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
batch_size = len(new_input_embeds) | |
new_input_embeds_padded = [] | |
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) | |
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) | |
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) | |
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): | |
cur_len = cur_new_embed.shape[0] | |
if getattr(self.config, "tokenizer_padding_side", "right") == "left": | |
new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0)) | |
if cur_len > 0: | |
new_labels_padded[i, -cur_len:] = cur_new_labels | |
attention_mask[i, -cur_len:] = True | |
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) | |
else: | |
new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)) | |
if cur_len > 0: | |
new_labels_padded[i, :cur_len] = cur_new_labels | |
attention_mask[i, :cur_len] = True | |
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) | |
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) | |
if _labels is None: | |
new_labels = None | |
else: | |
new_labels = new_labels_padded | |
if _attention_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) | |
if _position_ids is None: | |
position_ids = None | |
if getattr(self.config, "use_pos_skipping", False) and self.training: | |
position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device) | |
split_position = random.randint(0, new_input_embeds.size(1)) | |
left_add = random.randint(0, self.config.pos_skipping_range) | |
right_add = random.randint(left_add, self.config.pos_skipping_range) | |
position_ids[:, :split_position] += left_add | |
position_ids[:, split_position:] += right_add | |
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels | |
def initialize_vision_tokenizer(self, model_args, tokenizer): | |
total_num_new_tokens = 0 | |
vocab_size = len(tokenizer) | |
if model_args.mm_use_im_start_end: | |
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.config.image_start_tag_id = tokenizer.convert_tokens_to_ids(DEFAULT_IM_START_TOKEN) | |
self.config.image_end_tag_id = tokenizer.convert_tokens_to_ids(DEFAULT_IM_END_TOKEN) | |
total_num_new_tokens += num_new_tokens | |
self.resize_token_embeddings(vocab_size + total_num_new_tokens) | |
if model_args.num_scale_tokens > 0: | |
scale_tokens = [model_args.scale_token_format.format(str(i)) for i in range(model_args.num_scale_tokens)] | |
num_new_tokens = tokenizer.add_tokens(scale_tokens, special_tokens=False) | |
self.config.scale_start_token_id = tokenizer.convert_tokens_to_ids(scale_tokens[0]) | |
self.config.scale_end_token_id = tokenizer.convert_tokens_to_ids(scale_tokens[-1]) | |
self.config.num_scale_tokens = model_args.num_scale_tokens | |
total_num_new_tokens += num_new_tokens | |
self.resize_token_embeddings(vocab_size + total_num_new_tokens) | |
if model_args.num_image_tokens > 0: | |
image_tokens = [model_args.image_token_format.format(str(i)) for i in range(model_args.num_image_tokens)] | |
num_new_tokens = tokenizer.add_tokens(image_tokens, special_tokens=False) | |
self.config.image_start_token_id = tokenizer.convert_tokens_to_ids(image_tokens[0]) | |
self.config.image_end_token_id = tokenizer.convert_tokens_to_ids(image_tokens[-1]) | |
self.config.num_image_tokens = model_args.num_image_tokens | |
total_num_new_tokens += num_new_tokens | |
self.resize_token_embeddings(vocab_size + total_num_new_tokens) | |
if num_new_tokens > 0: | |
self.config.num_new_tokens = num_new_tokens | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
vision_tower = self.get_vision_tower() | |
if model_args.load_embeddings_from_vision and vision_tower is not None: | |
vision_embeddings = vision_tower.get_embedding() | |
if model_args.num_image_tokens == vision_embeddings.shape[0] and input_embeddings.shape[1] == vision_embeddings.shape[1]: | |
rank0_print("Load vision embeddings from vision tower.") | |
input_embeddings[self.config.image_start_token_id:self.config.image_end_token_id+1] = vision_embeddings |