import os import torch from torch import nn from transformers.models.siglip.image_processing_siglip import SiglipImageProcessor from blip3o.utils import rank0_print from tok.ta_tok import TextAlignedTokenizer from tok.utils import ScalingLayer class TATokVisionTower(nn.Module): def __init__(self, vision_tower, vision_tower_cfg, delay_load=False): super().__init__() self.is_loaded = False self.config = None self.image_processor = SiglipImageProcessor() self.vision_tower_name = vision_tower if not delay_load: rank0_print(f"Loading vision tower: {vision_tower}") self.load_model() elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False): # TODO: better detector is needed. rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.") self.load_model() elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts: rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.") self.load_model() else: self.cfg_only = self.config def load_model(self, device_map=None): if self.is_loaded: rank0_print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name)) return self.vision_tower = TextAlignedTokenizer.from_checkpoint(self.vision_tower_name, load_teacher=False).to(device_map) self.vision_tower.bottleneck.regularizer.set_eval_deterministic(deterministic=True) self.vision_tower.input_type = 'rec' self.vision_tower.scale_layer = ScalingLayer(mean=[0., 0., 0.], std=[1., 1., 1.]) self.vision_tower.requires_grad_(False) self.vision_tower.eval() self.pool_scales = [1, 1, 2, 3] input_size = self.vision_tower.input_size self.image_processor.size = (input_size, input_size) self.image_processor.crop_size = {'height': input_size, 'width': input_size} self.image_tokens = self.vision_tower.bottleneck_token_num self.bottleneck_dim = self.vision_tower.bottleneck_dim self.num_patches = self.image_tokens self.num_patches_per_side = int(self.num_patches ** 0.5) self.hidden_size = self.vision_tower.encoder_hidden_dim self.image_size = input_size self.is_loaded = True def get_embedding(self): return self.vision_tower.bottleneck.regularizer.get_emb() def forward(self, images, pool_scale=1): # load from ENV # pool_scale from ENV has the highest priority pool_scale = int(os.environ.get('POOL_SCALE', pool_scale)) if pool_scale is None: pool_scale = 1 if type(images) is list: image_features, tokens = [], [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), pool_scale=pool_scale) image_feature, token = image_forward_out['vq_feats'].to(image.dtype), image_forward_out['bottleneck_rep'] image_features.append(image_feature) tokens.append(token) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), pool_scale=pool_scale) image_features, tokens = image_forward_outs['vq_feats'].to(images.dtype), image_forward_outs['bottleneck_rep'] return {"image_features": image_features, "tokens": tokens, 'pool_scale': pool_scale} @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): for p in self.vision_tower.parameters(): return p.dtype @property def device(self): for p in self.vision_tower.parameters(): return p.device