Spaces:
Sleeping
Sleeping
File size: 3,124 Bytes
715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 9112062 715aad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
# VOICE SYNTHESIS MODULE FOR JAY'S MOBILE WASH
# Simplified version without PyTorch dependencies
import os
import logging
import json
import time
import traceback
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger('voice_synthesis')
# Import utility functions
try:
from modules.utils import handle_errors, ErrorManager, generate_id
except ImportError:
logger.error("Failed to import utils - using fallbacks")
# Fallback definitions if imports fail
def handle_errors(func):
return func
class ErrorManager:
@staticmethod
def add_error(*args, **kwargs):
logger.error(f"Error: {kwargs.get('error_message', 'Unknown error')}")
def generate_id(prefix='id_'):
import random
timestamp = int(time.time() * 1000)
random_part = random.randint(1000, 9999)
return f"{prefix}{timestamp}{random_part}"
# Paths
try:
from modules.utils import STATIC_DIR
SAMPLES_DIR = os.path.join(STATIC_DIR, "samples")
MODELS_DIR = os.path.join(STATIC_DIR, "models")
except ImportError:
# Fallback paths if import fails
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
STATIC_DIR = os.path.join(BASE_DIR, "static")
SAMPLES_DIR = os.path.join(STATIC_DIR, "samples")
MODELS_DIR = os.path.join(STATIC_DIR, "models")
# Ensure directories exist
Path(SAMPLES_DIR).mkdir(parents=True, exist_ok=True)
Path(MODELS_DIR).mkdir(parents=True, exist_ok=True)
class VoiceSynthesizer:
"""Simplified voice synthesis class without PyTorch dependencies"""
def __init__(self):
"""Initialize voice synthesizer"""
self.models = {}
self.default_model = "system_female"
logger.info("Initialized simplified voice synthesizer")
@handle_errors
def load_settings(self):
"""Load voice settings from config"""
logger.info("Voice settings loading skipped in simplified mode")
@handle_errors
def text_to_speech(self, text, model_id=None):
"""Simplified text-to-speech without actual audio generation"""
if not model_id:
model_id = self.default_model
# Generate a unique ID for the audio file
audio_id = generate_id('speech_')
output_path = os.path.join(SAMPLES_DIR, f"{audio_id}.txt")
try:
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Write text to file instead of audio
with open(output_path, 'w') as f:
f.write(f"TEXT: {text}\nMODEL: {model_id}\n")
logger.info(f"Generated speech text placeholder: {output_path}")
return output_path
except Exception as e:
error_msg = f"Failed to create speech placeholder: {str(e)}"
logger.error(error_msg)
return None
# Global instance
voice_synthesizer = VoiceSynthesizer() |