Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,389 Bytes
f499d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import argparse
import yaml
from box import Box
import os
import torch
import lightning as L
from lightning.pytorch.callbacks import ModelCheckpoint, Callback
from typing import List
from math import ceil
import numpy as np
from lightning.pytorch.strategies import FSDPStrategy, DDPStrategy
from src.inference.download import download
from src.data.asset import Asset
from src.data.extract import get_files
from src.data.dataset import UniRigDatasetModule, DatasetConfig, ModelInput
from src.data.datapath import Datapath
from src.data.transform import TransformConfig
from src.tokenizer.spec import TokenizerConfig
from src.tokenizer.parse import get_tokenizer
from src.model.parse import get_model
from src.system.parse import get_system, get_writer
from tqdm import tqdm
import time
def load(task: str, path: str) -> Box:
if path.endswith('.yaml'):
path = path.removesuffix('.yaml')
path += '.yaml'
print(f"\033[92mload {task} config: {path}\033[0m")
return Box(yaml.safe_load(open(path, 'r')))
def nullable_string(val):
if not val:
return None
return val
if __name__ == "__main__":
torch.set_float32_matmul_precision('high')
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, required=True)
parser.add_argument("--seed", type=int, required=False, default=123,
help="random seed")
parser.add_argument("--input", type=nullable_string, required=False, default=None,
help="a single input file or files splited by comma")
parser.add_argument("--input_dir", type=nullable_string, required=False, default=None,
help="input directory")
parser.add_argument("--output", type=nullable_string, required=False, default=None,
help="filename for a single output")
parser.add_argument("--output_dir", type=nullable_string, required=False, default=None,
help="output directory")
parser.add_argument("--npz_dir", type=nullable_string, required=False, default='tmp',
help="intermediate npz directory")
parser.add_argument("--cls", type=nullable_string, required=False, default=None,
help="class name")
parser.add_argument("--data_name", type=nullable_string, required=False, default=None,
help="npz filename from skeleton phase")
args = parser.parse_args()
L.seed_everything(args.seed, workers=True)
task = load('task', args.task)
mode = task.mode
assert mode in ['predict']
if args.input is not None or args.input_dir is not None:
assert args.output_dir is not None or args.output is not None, 'output or output_dir must be specified'
assert args.npz_dir is not None, 'npz_dir must be specified'
files = get_files(
data_name=task.components.data_name,
inputs=args.input,
input_dataset_dir=args.input_dir,
output_dataset_dir=args.npz_dir,
force_override=True,
warning=False,
)
files = [f[1] for f in files]
if len(files) > 1 and args.output is not None:
print("\033[92mwarning: output is specified, but multiple files are detected. Output will be written.\033[0m")
datapath = Datapath(files=files, cls=args.cls)
else:
datapath = None
data_config = load('data', os.path.join('configs/data', task.components.data))
transform_config = load('transform', os.path.join('configs/transform', task.components.transform))
# get tokenizer
tokenizer_config = task.components.get('tokenizer', None)
if tokenizer_config is not None:
tokenizer_config = load('tokenizer', os.path.join('configs/tokenizer', task.components.tokenizer))
tokenizer_config = TokenizerConfig.parse(config=tokenizer_config)
# get data name
data_name = task.components.get('data_name', 'raw_data.npz')
if args.data_name is not None:
data_name = args.data_name
# get predict dataset
predict_dataset_config = data_config.get('predict_dataset_config', None)
if predict_dataset_config is not None:
predict_dataset_config = DatasetConfig.parse(config=predict_dataset_config).split_by_cls()
# get predict transform
predict_transform_config = transform_config.get('predict_transform_config', None)
if predict_transform_config is not None:
predict_transform_config = TransformConfig.parse(config=predict_transform_config)
# get model
model_config = task.components.get('model', None)
if model_config is not None:
model_config = load('model', os.path.join('configs/model', model_config))
if tokenizer_config is not None:
tokenizer = get_tokenizer(config=tokenizer_config)
else:
tokenizer = None
model = get_model(tokenizer=tokenizer, **model_config)
else:
model = None
# set data
data = UniRigDatasetModule(
process_fn=None if model is None else model._process_fn,
predict_dataset_config=predict_dataset_config,
predict_transform_config=predict_transform_config,
tokenizer_config=tokenizer_config,
debug=False,
data_name=data_name,
datapath=datapath,
cls=args.cls,
)
# add call backs
callbacks = []
## get checkpoint callback
checkpoint_config = task.get('checkpoint', None)
if checkpoint_config is not None:
checkpoint_config['dirpath'] = os.path.join('experiments', task.experiment_name)
callbacks.append(ModelCheckpoint(**checkpoint_config))
## get writer callback
writer_config = task.get('writer', None)
if writer_config is not None:
assert predict_transform_config is not None, 'missing predict_transform_config in transform'
if args.output_dir is not None or args.output is not None:
if args.output is not None:
assert args.output.endswith('.fbx'), 'output must be .fbx'
writer_config['npz_dir'] = args.npz_dir
writer_config['output_dir'] = args.output_dir
writer_config['output_name'] = args.output
writer_config['user_mode'] = True
callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
# get trainer
trainer_config = task.get('trainer', {})
# get system
system_config = task.components.get('system', None)
if system_config is not None:
system_config = load('system', os.path.join('configs/system', system_config))
system = get_system(
**system_config,
model=model,
steps_per_epoch=1,
)
else:
system = None
logger = None
# set ckpt path
resume_from_checkpoint = task.get('resume_from_checkpoint', None)
resume_from_checkpoint = download(resume_from_checkpoint)
trainer = L.Trainer(
callbacks=callbacks,
logger=logger,
**trainer_config,
)
if mode == 'predict':
assert resume_from_checkpoint is not None, 'expect resume_from_checkpoint in task'
trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
else:
assert 0 |