Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,135 Bytes
f499d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
from collections import defaultdict
from dataclasses import dataclass
import numpy as np
from numpy import ndarray
from typing import Dict, Union, List, Tuple
from .order import Order
from .raw_data import RawData
from .exporter import Exporter
from ..tokenizer.spec import TokenizeInput
from .utils import linear_blend_skinning
import trimesh
@dataclass
class Asset(Exporter):
'''
Dataclass to handle data parsed from raw data.
'''
# data class
cls: str
# where is this asset from
path: str
# data file name
data_name: str
# vertices of the mesh, shape (N, 3), float32
vertices: ndarray
# normals of vertices, shape (N, 3), float32
vertex_normals: ndarray
# faces of mesh, shape (F, 3), face id starts from 0 to F-1, int64
faces: ndarray
# face normal of mesh, shape (F, 3), float32
face_normals: ndarray
# joints of bones, shape (J, 3), float32
joints: Union[ndarray, None]=None
# tails of joints, shape (J, 3), float32
tails: Union[ndarray, None]=None
# skinning of joints, shape (N, J), float32
skin: Union[ndarray, None]=None
# whether the joint has skin, bool
no_skin: Union[ndarray, None]=None
# vertex groups
vertex_groups: Union[Dict[str, ndarray], None]=None
# parents of joints, None represents no parent(a root joint)
# make sure parent[k] < k
parents: Union[List[Union[int, None]], None]=None
# names of joints
names: Union[List[str], None]=None
# sampled vertices, shape (N, 3)
sampled_vertices: Union[ndarray, None]=None
# sampled normals, shape (N, 3)
sampled_normals: Union[ndarray, None]=None
# sampled vertex groups, every vertex group should be (N, J)
sampled_vertex_groups: Union[Dict[str, ndarray], None]=None
# {id: part}, part==None -> a spring token
parts_bias: Union[Dict[int, Union[str, None]], None]=None
# local coordinate, shape (J, 4, 4)
matrix_local: Union[ndarray, None]=None
# pose matrix for skinning loss calculation, shape (J, 4, 4)
pose_matrix: Union[ndarray, None]=None
meta: Union[Dict[str, ...], None]=None
@property
def N(self):
'''
number of vertices
'''
return self.vertices.shape[0]
@property
def F(self):
'''
number of faces
'''
return self.faces.shape[0]
@property
def J(self):
'''
number of joints
'''
return self.joints.shape[0]
def get_matrix(self, matrix_basis: ndarray, matrix_local: Union[ndarray, None]=None):
'''
get matrix
matrix_basis: (J, 4, 4)
'''
if matrix_local is None:
assert self.joints is not None
matrix_local = self.matrix_local
if matrix_local is None:
matrix_local = np.zeros((self.J, 4, 4))
matrix_local[:, 0, 0] = 1.
matrix_local[:, 1, 1] = 1.
matrix_local[:, 2, 2] = 1.
matrix_local[:, 3, 3] = 1.
for i in range(self.J):
matrix_local[i, :3, 3] = self.joints[i]
matrix = np.zeros((self.J, 4, 4))
for i in range(self.J):
if i==0:
matrix[i] = matrix_local[i] @ matrix_basis[i]
else:
pid = self.parents[i]
matrix_parent = matrix[pid]
matrix_local_parent = matrix_local[pid]
matrix[i] = (
matrix_parent @
(np.linalg.inv(matrix_local_parent) @ matrix_local[i]) @
matrix_basis[i]
)
return matrix
def apply_matrix_basis(self, matrix_basis: ndarray):
'''
apply a pose to armature
matrix_basis: (J, 4, 4)
'''
matrix_local = self.matrix_local
if matrix_local is None:
matrix_local = np.zeros((self.J, 4, 4))
matrix_local[:, 0, 0] = 1.
matrix_local[:, 1, 1] = 1.
matrix_local[:, 2, 2] = 1.
matrix_local[:, 3, 3] = 1.
for i in range(self.J):
matrix_local[i, :3, 3] = self.joints[i].copy()
matrix = self.get_matrix(matrix_basis=matrix_basis, matrix_local=matrix_local)
self.joints = matrix[:, :3, 3].copy()
vertices = linear_blend_skinning(self.vertices, matrix_local, matrix, self.skin, pad=1, value=1.)
# update matrix_local
self.matrix_local = matrix.copy()
# change tails
if self.tails is not None:
t_skin = np.eye(self.J)
self.tails = linear_blend_skinning(self.tails, matrix_local, matrix, t_skin, pad=1, value=1.)
# in accordance with trimesh's normals
mesh = trimesh.Trimesh(vertices=vertices, faces=self.faces, process=False)
self.vertices = vertices
self.vertex_normals = mesh.vertex_normals.copy()
self.face_normals = mesh.face_normals.copy()
def set_order_by_names(self, new_names: List[str]):
assert len(new_names) == len(self.names)
name_to_id = {name: id for (id, name) in enumerate(self.names)}
new_name_to_id = {name: id for (id, name) in enumerate(new_names)}
perm = []
new_parents = []
for (new_id, name) in enumerate(new_names):
perm.append(name_to_id[name])
pid = self.parents[name_to_id[name]]
if new_id == 0:
assert pid is None, 'first bone is not root bone'
else:
pname = self.names[pid]
pid = new_name_to_id[pname]
assert pid < new_id, 'new order does not form a tree'
new_parents.append(pid)
if self.joints is not None:
self.joints = self.joints[perm]
self.parents = new_parents
if self.tails is not None:
self.tails = self.tails[perm]
if self.skin is not None:
self.skin = self.skin[:, perm]
if self.no_skin is not None:
self.no_skin = self.no_skin[perm]
if self.matrix_local is not None:
self.matrix_local = self.matrix_local[perm]
self.names = new_names
def set_order(self, order: Order):
if self.names is None or self.parents is None:
return
new_names, self.parts_bias = order.arrange_names(cls=self.cls, names=self.names, parents=self.parents)
self.set_order_by_names(new_names=new_names)
def collapse(self, keep: List[str]):
dsu = [i for i in range(self.J)]
def find(x: int) -> int:
if dsu[x] == x:
return x
y = find(dsu[x])
dsu[x] = y
return y
def merge(x: int, y: int):
dsu[find(x)] = find(y)
if self.tails is not None:
new_tails = self.tails.copy()
else:
new_tails = None
if self.skin is not None:
new_skin = self.skin.copy()
else:
new_skin = None
if self.no_skin is not None:
new_no_skin = self.no_skin.copy()
else:
new_no_skin = None
if self.matrix_local is not None:
matrix_local = self.matrix_local.copy()
else:
matrix_local = None
new_names = []
new_parents = []
perm = []
new_name_to_id = {}
tot = 0
for (i, name) in enumerate(self.names):
if name in keep:
new_names.append(name)
new_name_to_id[name] = tot
tot += 1
perm.append(i)
pid = self.parents[i]
if pid is None:
new_parents.append(None)
else:
pid = find(pid)
new_parents.append(new_name_to_id[self.names[pid]])
continue
assert i != 0, 'cannot remove root'
id = find(i)
pid = find(self.parents[id])
# be careful !
# do not copy tail here because you dont know which child to inherit from
if new_skin is not None:
new_skin[:, pid] += new_skin[:, id]
if new_no_skin is not None:
new_no_skin[pid] &= new_no_skin[id]
merge(id, pid)
if new_tails is not None:
new_tails = new_tails[perm]
if new_skin is not None:
new_skin = new_skin[:, perm]
if new_no_skin is not None:
new_no_skin = new_no_skin[perm]
if matrix_local is not None:
matrix_local = matrix_local[perm]
if self.joints is not None:
self.joints = self.joints[perm]
self.parents = new_parents
self.tails = new_tails
self.skin = new_skin
self.no_skin = new_no_skin
self.names = new_names
self.matrix_local = matrix_local
@staticmethod
def from_raw_data(
raw_data: RawData,
cls: str,
path: str,
data_name: str,
) -> 'Asset':
'''
Return an asset initialized from raw data and do transform.
'''
return Asset(
cls=cls,
path=path,
data_name=data_name,
vertices=raw_data.vertices,
vertex_normals=raw_data.vertex_normals,
faces=raw_data.faces,
face_normals=raw_data.face_normals,
joints=raw_data.joints,
tails=raw_data.tails,
skin=raw_data.skin,
no_skin=raw_data.no_skin,
parents=raw_data.parents,
names=raw_data.names,
matrix_local=raw_data.matrix_local,
meta={},
)
def get_tokenize_input(self) -> TokenizeInput:
children = defaultdict(list)
for (id, p) in enumerate(self.parents):
if p is not None:
children[p].append(id)
bones = []
branch = []
is_leaf = []
last = None
for i in range(self.J):
is_leaf.append(len(children[i])==0)
if i == 0:
bones.append(np.concatenate([self.joints[i], self.joints[i]]))
branch.append(False)
else:
pid = self.parents[i]
bones.append(np.concatenate([self.joints[pid], self.joints[i]]))
branch.append(pid!=last)
last = i
bones = np.stack(bones)
branch = np.array(branch, dtype=bool)
is_leaf = np.array(is_leaf, dtype=bool)
return TokenizeInput(
bones=bones,
tails=self.tails,
branch=branch,
is_leaf=is_leaf,
no_skin=self.no_skin,
cls=self.cls,
parts_bias=self.parts_bias,
)
def export_pc(self, path: str, with_normal: bool=True, normal_size=0.01):
'''
export point cloud
'''
vertices = self.vertices
normals = self.vertex_normals
if self.sampled_vertices is not None:
vertices = self.sampled_vertices
normals = self.sampled_normals
if with_normal == False:
normals = None
self._export_pc(vertices=vertices, path=path, vertex_normals=normals, normal_size=normal_size)
def export_mesh(self, path: str):
'''
export mesh
'''
self._export_mesh(vertices=self.vertices, faces=self.faces, path=path)
def export_skeleton(self, path: str):
'''
export spring
'''
self._export_skeleton(joints=self.joints, parents=self.parents, path=path)
def export_skeleton_sequence(self, path: str):
'''
export spring
'''
self._export_skeleton_sequence(joints=self.joints, parents=self.parents, path=path)
def export_fbx(
self,
path: str,
vertex_group_name: str,
extrude_size: float=0.03,
group_per_vertex: int=-1,
add_root: bool=False,
do_not_normalize: bool=False,
use_extrude_bone: bool=True,
use_connect_unique_child: bool=True,
extrude_from_parent: bool=True,
use_tail: bool=False,
use_origin: bool=False,
):
'''
export the whole model with skining
'''
self._export_fbx(
path=path,
vertices=self.vertices if use_origin else self.sampled_vertices,
joints=self.joints,
skin=self.sampled_vertex_groups[vertex_group_name],
parents=self.parents,
names=self.names,
faces=self.faces if use_origin else None,
extrude_size=extrude_size,
group_per_vertex=group_per_vertex,
add_root=add_root,
do_not_normalize=do_not_normalize,
use_extrude_bone=use_extrude_bone,
use_connect_unique_child=use_connect_unique_child,
extrude_from_parent=extrude_from_parent,
tails=self.tails if use_tail else None,
)
def export_render(self, path: str, resolution: Tuple[int, int]=[256, 256], use_tail: bool=False):
if use_tail:
assert self.tails is not None
self._export_render(
path=path,
vertices=self.vertices,
faces=self.faces,
bones=np.concatenate([self.joints, self.tails], axis=-1),
resolution=resolution,
)
else:
pjoints = self.joints[self.parents[1:]]
self._export_render(
path=path,
vertices=self.vertices,
faces=self.faces,
bones=np.concatenate([pjoints, self.joints[1:]], axis=-1),
resolution=resolution,
) |