File size: 6,621 Bytes
f499d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from typing import List
from heapq import heappush, heappop, heapify
from dataclasses import dataclass
from abc import ABC, abstractmethod
import numpy as np
from numpy import ndarray

from typing import Dict, Tuple

from .asset import Asset
from .spec import ConfigSpec

@dataclass
class SamplerConfig(ConfigSpec):
    '''
    Config to handle bones re-ordering.
    '''
    # which sampler to use
    method: str
    
    # how many samples in total
    num_samples: int
    
    # how many vertex samples
    vertex_samples: int
    
    # kwargs
    kwargs: Dict[str, Dict]
    
    @classmethod
    def parse(cls, config) -> 'SamplerConfig':
        cls.check_keys(config)
        return SamplerConfig(
            method=config.method,
            num_samples=config.get('num_samples', 0),
            vertex_samples=config.get('vertex_samples', 0),
            kwargs=config.get('kwargs', {}),
        )

@dataclass
class SamplerResult():
    # sampled vertices
    vertices: ndarray
    
    # sampled normals
    normals: ndarray
    
    # sampled vertex groups
    vertex_groups: Dict[str, ndarray]

class Sampler(ABC):
    '''
    Abstract class for samplers.
    '''
    
    def _sample_barycentric(
        self,
        vertex_group: ndarray,
        faces: ndarray,
        face_index: ndarray,
        random_lengths: ndarray,
    ):
        v_origins = vertex_group[faces[face_index, 0]]
        v_vectors = vertex_group[faces[face_index, 1:]]
        v_vectors -= v_origins[:, np.newaxis, :]
        
        sample_vector = (v_vectors * random_lengths).sum(axis=1)
        v_samples = sample_vector + v_origins
        return v_samples
    
    @abstractmethod
    def __init__(self, config: SamplerConfig):
        pass
    
    @abstractmethod
    def sample(
        self,
        asset: Asset,
    ) -> SamplerResult:
        '''
        Return sampled vertices, sampled normals and vertex groups.
        '''
        pass

class SamplerOrigin(Sampler):
    def __init__(self, config: SamplerConfig):
        super().__init__(config)
        self.num_samples    = config.num_samples
        self.vertex_samples = config.vertex_samples
        
    def sample(
        self,
        asset: Asset,
    ) -> SamplerResult:
        perm = np.random.permutation(asset.vertices.shape[0])
        if asset.vertices.shape[0] < self.num_samples:
            m = self.num_samples - asset.vertices.shape[0]
            perm = np.concatenate([perm, np.random.randint(0, asset.vertices.shape[0], (m,))])
        perm = perm[:self.num_samples]
        n_v = asset.vertices[perm]
        n_n = asset.vertex_normals[perm]
        n_vg = {name: v[perm] for name, v in asset.vertex_groups.items()}
        return SamplerResult(
            vertices=n_v,
            normals=n_n,
            vertex_groups=n_vg,
        )

class SamplerMix(Sampler):
    def __init__(self, config: SamplerConfig):
        super().__init__(config)
        self.num_samples    = config.num_samples
        self.vertex_samples = config.vertex_samples
        assert self.num_samples >= self.vertex_samples, 'num_samples should >= vertex_samples'
    
    @property
    def mesh_preserve(self):
        return self.num_samples==-1
    
    def sample(
        self,
        asset: Asset,
    ) -> SamplerResult:
        # 1. sample vertices
        num_samples = self.num_samples
        perm = np.random.permutation(asset.vertices.shape[0])
        vertex_samples = min(self.vertex_samples, asset.vertices.shape[0])
        num_samples -= vertex_samples
        perm = perm[:vertex_samples]
        n_vertex = asset.vertices[perm]
        n_normal = asset.vertex_normals[perm]
        n_v = {name: v[perm] for name, v in asset.vertex_groups.items()}
        
        # 2. sample surface
        perm = np.random.permutation(num_samples)
        vertex_samples, face_index, random_lengths = sample_surface(
            num_samples=num_samples,
            vertices=asset.vertices,
            faces=asset.faces,
            return_weight=True,
        )
        vertex_samples = np.concatenate([n_vertex, vertex_samples], axis=0)
        normal_samples = np.concatenate([n_normal, asset.face_normals[face_index]], axis=0)
        vertex_group_samples = {}
        for n, v in asset.vertex_groups.items():
            g = self._sample_barycentric(
                vertex_group=v,
                faces=asset.faces,
                face_index=face_index,
                random_lengths=random_lengths,
            )
            vertex_group_samples[n] = np.concatenate([n_v[n], g], axis=0)
        return SamplerResult(
            vertices=vertex_samples,
            normals=normal_samples,
            vertex_groups=vertex_group_samples,
        )

def sample_surface(
    num_samples: int,
    vertices: ndarray,
    faces: ndarray,
    return_weight: bool=False,
):
    '''
    Randomly pick samples according to face area.
    
    See sample_surface: https://github.com/mikedh/trimesh/blob/main/trimesh/sample.py
    '''
    # get face area
    offset_0 = vertices[faces[:, 1]] - vertices[faces[:, 0]]
    offset_1 = vertices[faces[:, 2]] - vertices[faces[:, 0]]
    face_weight = np.cross(offset_0, offset_1, axis=-1)
    face_weight = (face_weight * face_weight).sum(axis=1)
    
    weight_cum = np.cumsum(face_weight, axis=0)
    face_pick = np.random.rand(num_samples) * weight_cum[-1]
    face_index = np.searchsorted(weight_cum, face_pick)
    
    # pull triangles into the form of an origin + 2 vectors
    tri_origins = vertices[faces[:, 0]]
    tri_vectors = vertices[faces[:, 1:]]
    tri_vectors -= np.tile(tri_origins, (1, 2)).reshape((-1, 2, 3))

    # pull the vectors for the faces we are going to sample from
    tri_origins = tri_origins[face_index]
    tri_vectors = tri_vectors[face_index]
    
    # randomly generate two 0-1 scalar components to multiply edge vectors b
    random_lengths = np.random.rand(len(tri_vectors), 2, 1)
    
    random_test = random_lengths.sum(axis=1).reshape(-1) > 1.0
    random_lengths[random_test] -= 1.0
    random_lengths = np.abs(random_lengths)
    
    sample_vector = (tri_vectors * random_lengths).sum(axis=1)
    vertex_samples = sample_vector + tri_origins
    if not return_weight:
        return vertex_samples
    return vertex_samples, face_index, random_lengths

def get_sampler(config: SamplerConfig) -> Sampler:
    method = config.method
    if method=='origin':
        sampler = SamplerOrigin(config)
    elif method=='mix':
        sampler = SamplerMix(config)
    else:
        raise ValueError(f"sampler method {method} not supported")
    return sampler