File size: 20,585 Bytes
f499d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import platform
import os
if platform.system() == "Linux":
    os.environ['PYOPENGL_PLATFORM'] = 'egl'

from typing import Dict, List, Tuple
from dataclasses import dataclass
from collections import defaultdict
from abc import ABC, abstractmethod
import numpy as np
from numpy import ndarray

from scipy.spatial import cKDTree
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import shortest_path, connected_components

from .asset import Asset
from .spec import ConfigSpec

@dataclass
class VertexGroupConfig(ConfigSpec):
    '''
    Config to sample vertex group.
    '''
    
    # names
    names: List[str]
    
    # kwargs
    kwargs: Dict[str, Dict]
    
    @classmethod
    def parse(cls, config) -> 'VertexGroupConfig':
        cls.check_keys(config)
        return VertexGroupConfig(
            names=config.get('names', []),
            kwargs=config.get('kwargs', {}),
        )

class VertexGroup(ABC):
    
    @abstractmethod
    def __init__(self, **kwargs):
        pass
    
    @abstractmethod
    def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
        pass
    
class VertexGroupSkin(VertexGroup):
    '''
    Capture skin.
    '''
    
    def __init__(self, **kwargs):
        pass
    
    def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
        return {
            'skin': asset.skin / (asset.skin.sum(axis=-1, keepdims=True) + 1e-6),
        }

class VertexGroupGeodesicDistance(VertexGroup):
    '''
    Calculate geodesic distance.
    '''
    def __init__(self, **kwargs):
        self.deterministic = kwargs.get('deterministic', False)
        self.soft_mask = kwargs.get('soft_mask', False)
    
    def _prepare(
        self,
        joints: ndarray, # (J, 3)
        edges: List[Tuple[int, int]],
    ) -> Tuple[ndarray, ndarray]:
        J = joints.shape[0]
        dis_matrix = np.ones((J, J)) * 100.0
        step_matrix = np.ones((J, J)) * 100.0
        def dis(x: ndarray, y: ndarray):
            return np.linalg.norm(x-y)
        for i in range(J):
            dis_matrix[i, i] = 0.
            step_matrix[i, i] = 0.
        for edge in edges:
            dis_matrix[edge[0], edge[1]] = dis(joints[edge[0]], joints[edge[1]])
            dis_matrix[edge[1], edge[0]] = dis(joints[edge[0]], joints[edge[1]])
            step_matrix[edge[0], edge[1]] = 1
            step_matrix[edge[1], edge[0]] = 1
        # floyd
        for k in range(J):
            dis_matrix = np.minimum(dis_matrix, dis_matrix[:, k][:, np.newaxis] + dis_matrix[k, :][np.newaxis, :])
            step_matrix = np.minimum(step_matrix, step_matrix[:, k][:, np.newaxis] + step_matrix[k, :][np.newaxis, :])
        return dis_matrix, step_matrix
    
    def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
        children = defaultdict(list)
        edges = []
        for (id, p) in enumerate(asset.parents):
            if p is not None:
                edges.append((id, p))
                children[p].append(id)
        child = []
        tails = asset.tails.copy()
        for id in range(asset.J):
            if len(children[id]) == 1:
                child.append(children[id][0])
            else:
                child.append(id)
                if self.deterministic:
                    tails[id] = asset.joints[id]
        child = np.array(child)
        dis_matrix, step_matrix = self._prepare(
            joints=asset.joints,
            edges=edges,
        )
        geo_dis, geo_mask = get_geodesic_distance(
            vertices=asset.vertices,
            joints=asset.joints,
            tails=tails,
            dis_matrix=dis_matrix,
            step_matrix=step_matrix,
            child=child,
            soft_mask=self.soft_mask,
        )
        return {
            'geodesic_distance': geo_dis,
            'geodesic_mask': geo_mask,
        }

class VertexGroupVoxelSkin(VertexGroup):
    '''
    Capture voxel skin.
    '''
    
    def __init__(self, **kwargs):
        self.grid = kwargs.get('grid', 64)
        self.alpha = kwargs.get('alpha', 0.5)
        self.link_dis = kwargs.get('link_dis', 0.00001)
        self.grid_query = kwargs.get('grid_query', 27)
        self.vertex_query = kwargs.get('vertex_query', 27)
        self.grid_weight = kwargs.get('grid_weight', 3.0)
        self.mode = kwargs.get('mode', 'square')
    
    def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
        
        # normalize into [-1, 1] first
        min_vals = np.min(asset.vertices, axis=0)
        max_vals = np.max(asset.vertices, axis=0)
        
        center = (min_vals + max_vals) / 2
        
        scale = np.max(max_vals - min_vals) / 2
        
        normalized_vertices = (asset.vertices - center) / scale
        normalized_joints = (asset.joints - center) / scale
        
        grid_indices, grid_coords = voxelization(
            vertices=normalized_vertices,
            faces=asset.faces,
            grid=self.grid,
        )
        skin = voxel_skin(
            grid=self.grid,
            grid_coords=grid_coords,
            joints=normalized_joints,
            vertices=normalized_vertices,
            faces=asset.faces,
            alpha=self.alpha,
            link_dis=self.link_dis,
            grid_query=self.grid_query,
            vertex_query=self.vertex_query,
            grid_weight=self.grid_weight,
            mode=self.mode,
        )
        skin = np.nan_to_num(skin, nan=0., posinf=0., neginf=0.)
        return {
            'voxel_skin': skin,
        }

class VertexGroupMeshPartDistance(VertexGroup):
    def __init__(self, **kwargs):
        self.part_dim = kwargs['part_dim']
        self.dis_dim = kwargs['dis_dim']
    
    def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
        tot, vertex_labels, face_labels = find_connected_components(asset.vertices, asset.faces)
        # (N, dis_dim)
        part_distances = compute_distances_in_components(asset.vertices, asset.faces, vertex_labels, tot, self.dis_dim)
        # (tot, part_dim)
        part_vectors = generate_spread_vectors(tot, self.part_dim)
        # (N, part_dim)
        part_vectors = np.zeros((asset.vertices.shape[0], self.part_dim))
        for i in range(tot):
            part_vectors[labels == i] = part_vectors[i]
        return {
            'num_parts': tot,
            'part_vectors': part_vectors,
            'part_distances': part_distances,
        }

# TODO: move this into a new file
class VertexGroupMeshParts(VertexGroup):
    def __init__(self, **kwargs):
        pass
    
    def get_vertex_group(self, asset: Asset) -> Dict[str, ndarray]:
        tot, vertex_labels, face_labels = find_connected_components(asset.vertices, asset.faces)
        asset.meta['num_parts'] = tot
        asset.meta['vertex_labels'] = vertex_labels
        asset.meta['face_labels'] = face_labels
        return {}

def get_geodesic_distance(
    vertices: ndarray, # (N, 3)
    joints: ndarray, # (J, 3)
    tails: ndarray, # (J, 3)
    dis_matrix: ndarray, # (J, J)
    step_matrix: ndarray, # (J, J)
    child: ndarray,
    eps: float=1e-4,
    soft_mask: bool=False,
) -> Tuple[ndarray, ndarray]:
    # (J, 3)
    offset = tails - joints
    inv = (1./(offset * offset + eps).sum(axis=-1))[np.newaxis, ...]
    # head
    g0 = tails[np.newaxis, ...] - vertices[:, np.newaxis, :]
    c0 = (g0 * offset[np.newaxis, ...]).sum(axis=-1) * inv
    # tail
    g1 = vertices[:, np.newaxis, :] - joints[np.newaxis, ...]
    c1 = (g1 * offset[np.newaxis, ...]).sum(axis=-1) * inv
    # (N, J)
    scale0 = (np.clip(c0, 0., 1.) + eps) / (np.clip(c0, 0., 1.) + np.clip(c1, 0., 1.) + eps * 2)
    scale1 = -scale0 + 1
    # (N, J, 3)
    nearest = scale0[..., np.newaxis] * joints[np.newaxis, ...] + scale1[..., np.newaxis] * tails[np.newaxis, ...]
    # (N, J)
    dis = np.linalg.norm(vertices[:, np.newaxis, :] - nearest, axis=-1)
    # (N)
    index = np.argmin(dis, axis=1)
    # (N)
    r = np.arange(dis.shape[0])
    # (N, J)
    res = (
        dis_matrix[index] * scale0[r[:, np.newaxis], index[:, np.newaxis]] +
        dis_matrix[child[index]] * scale1[r[:, np.newaxis], index[:, np.newaxis]]
    )
    if soft_mask:
        mask = (1.0 - (
            step_matrix[index] * scale0[r[:, np.newaxis], index[:, np.newaxis]] +
            step_matrix[child[index]] * scale1[r[:, np.newaxis], index[:, np.newaxis]]
        )).clip(0., 1.).astype(np.float32)
    else:
        mask = ((
            step_matrix[index] * scale0[r[:, np.newaxis], index[:, np.newaxis]] +
            step_matrix[child[index]] * scale1[r[:, np.newaxis], index[:, np.newaxis]]
        ) <= 1.).astype(np.float32)
    
    # normalize geo dis
    row_min = np.min(res, axis=0, keepdims=True)
    row_max = np.max(res, axis=0, keepdims=True)
    res = (res - row_min) / (row_max - row_min)
    res = np.nan_to_num(res, nan=0., posinf=0., neginf=0.)
    return res, mask

def get_vertex_groups(config: VertexGroupConfig) -> List[VertexGroup]:
    vertex_groups = []
    MAP = {
        'geodesic_distance': VertexGroupGeodesicDistance,
        'skin': VertexGroupSkin,
        'voxel_skin': VertexGroupVoxelSkin,
        'mesh_part_distance': VertexGroupMeshPartDistance,
        'mesh_parts': VertexGroupMeshParts,
    }
    for name in config.names:
        assert name in MAP, f"expect: [{','.join(MAP.keys())}], found: {name}"
        vertex_groups.append(MAP[name](**config.kwargs.get(name, {})))
    return vertex_groups

def voxelization(
    vertices: ndarray,
    faces: ndarray,
    grid: int=256,
    scale: float=1.0,
):
    import pyrender
    znear = 0.05
    zfar = 4.0
    eye_dis = 2.0 # distance from eye to origin
    r_faces = np.stack([faces[:, 0], faces[:, 2], faces[:, 1]], axis=-1)
    # get zbuffers
    mesh = pyrender.Mesh(
        primitives=[
            pyrender.Primitive(
                positions=vertices,
                indices=np.concatenate([faces, r_faces]), # double sided
                mode=pyrender.GLTF.TRIANGLES,
            )
        ]
    )
    scene = pyrender.Scene(bg_color=[0, 0, 0, 0])
    scene.add(mesh)
    
    camera = pyrender.OrthographicCamera(xmag=scale, ymag=scale, znear=znear, zfar=zfar)
    camera_poses = {}
    # coordinate:
    # see https://pyrender.readthedocs.io/en/latest/examples/cameras.html
    camera_poses['+z'] = np.array([
        [1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 0, 1, eye_dis],
        [0, 0, 0, 1],
    ], dtype=np.float32) # look at +z (bottom to top)
    camera_poses['-z'] = np.array([
        [-1, 0, 0, 0],
        [ 0, 1, 0, 0],
        [ 0, 0,-1, -eye_dis],
        [ 0, 0, 0, 1],
    ], dtype=np.float32) # look at -z (top to bottom)
    camera_poses['+y'] = np.array([
        [1, 0, 0, 0],
        [0, 0,-1, -eye_dis],
        [0, 1, 0, 0],
        [0, 0, 0, 1],
    ], dtype=np.float32) # look at +y (because model is looking at -y)(front to back)
    camera_poses['-y'] = np.array([
        [1, 0, 0, 0],
        [0, 0, 1, eye_dis],
        [0,-1, 0, 0],
        [0, 0, 0, 1],
    ], dtype=np.float32) # look at -y (back to front)
    camera_poses['+x'] = np.array([
        [0, 0,-1, -eye_dis],
        [0, 1, 0, 0],
        [1, 0, 0, 0],
        [0, 0, 0, 1],
    ], dtype=np.float32) # look at +x (left to right)
    camera_poses['-x'] = np.array([
        [ 0, 0, 1, eye_dis],
        [ 0, 1, 0, 0],
        [-1, 0, 0, 0],
        [ 0, 0, 0, 1],
    ], dtype=np.float32) # look at -x (righy to left)
    for name, pose in camera_poses.items():
        scene.add(camera, name=name, pose=pose)
    camera_nodes = [node for node in scene.get_nodes() if isinstance(node, pyrender.Node) and node.camera is not None]
    renderer = pyrender.OffscreenRenderer(viewport_width=grid, viewport_height=grid)

    i, j, k = np.indices((grid, grid, grid))
    grid_indices = np.stack((i.ravel(), j.ravel(), k.ravel()), axis=1, dtype=np.int64)
    grid_coords = np.stack((i.ravel(), j.ravel(), grid-1-k.ravel()), axis=1, dtype=np.float32) * 2 / grid - 1.0 + 1.0 / grid # every position is in the middle of the grid
    depths = {}
    for cam_node in camera_nodes:
        # a = time.time()
        scene.main_camera_node = cam_node
        name = cam_node.name
        proj_depth = renderer.render(scene, flags=pyrender.constants.RenderFlags.DEPTH_ONLY | pyrender.constants.RenderFlags.OFFSCREEN)
        proj_depth[proj_depth<znear] = zfar
        proj_depth = znear + zfar - (znear * zfar) / proj_depth # back to origin
        depths[name] = proj_depth
    
    mask_z = -grid_coords[:, 2] + depths['+z'][grid-1-grid_indices[:, 1], grid_indices[:, 0]] <= eye_dis

    mask_z &= grid_coords[:, 2] + depths['-z'][grid-1-grid_indices[:, 1], grid-1-grid_indices[:, 0]] <= eye_dis
    
    mask_x = -grid_coords[:, 0] + depths['+x'][grid-1-grid_indices[:, 1], grid-1-grid_indices[:, 2]] <= eye_dis
    
    mask_x &= grid_coords[:, 0] + depths['-x'][grid-1-grid_indices[:, 1], grid_indices[:, 2]] <= eye_dis
    
    mask_y = -grid_coords[:, 1] + depths['+y'][grid_indices[:, 2], grid_indices[:, 0]] <= eye_dis
    
    mask_y &= grid_coords[:, 1] + depths['-y'][grid-1-grid_indices[:, 2], grid_indices[:, 0]] <= eye_dis
    
    mask = (mask_x & mask_y) | (mask_x & mask_z) | (mask_y & mask_z)
    grid_indices = grid_indices[mask]
    grid_coords = grid_coords[mask]
    
    return grid_indices, grid_coords

def voxel_skin(
    grid: int,
    grid_coords: ndarray, # (M, 3)
    joints: ndarray, # (J, 3)
    vertices: ndarray, # (N, 3)
    faces: ndarray, # (F, 3)
    alpha: float=0.5,
    link_dis: float=0.00001,
    grid_query: int=27,
    vertex_query: int=27,
    grid_weight: float=3.0,
    mode: str='square',
):  
    
    # https://dl.acm.org/doi/pdf/10.1145/2485895.2485919
    assert mode in ['square', 'exp']
    J = joints.shape[0]
    M = grid_coords.shape[0]
    N = vertices.shape[0]
    
    grid_tree = cKDTree(grid_coords)
    vertex_tree = cKDTree(vertices)
    joint_tree = cKDTree(joints)
    
    # make combined vertices
    # 0   ~ N-1: mesh vertices
    # N   ~ N+M-1: grid vertices
    combined_vertices = np.concatenate([vertices, grid_coords], axis=0)
    
    # link adjacent grids
    dist, idx = grid_tree.query(grid_coords, grid_query) # 3*3*3
    dist = dist[:, 1:]
    idx = idx[:, 1:]
    mask = (0 < dist) & (dist < 2/grid*1.001)
    source_grid2grid = np.repeat(np.arange(M), grid_query-1)[mask.ravel()] + N
    to_grid2grid = idx[mask] + N
    weight_grid2grid = dist[mask] * grid_weight
    
    # link very close vertices
    dist, idx = vertex_tree.query(vertices, 4)
    dist = dist[:, 1:]
    idx = idx[:, 1:]
    mask = (0 < dist) & (dist < link_dis*1.001)
    source_close = np.repeat(np.arange(N), 3)[mask.ravel()]
    to_close = idx[mask]
    weight_close = dist[mask]
    
    # link grids to mesh vertices
    dist, idx = vertex_tree.query(grid_coords, vertex_query)
    mask = (0 < dist) & (dist < 2/grid*1.001) # sqrt(3)
    source_grid2vertex = np.repeat(np.arange(M), vertex_query)[mask.ravel()] + N
    to_grid2vertex = idx[mask]
    weight_grid2vertex = dist[mask]
    
    # build combined vertices tree
    combined_tree = cKDTree(combined_vertices)
    # link joints to the neartest vertices
    _, joint_indices = combined_tree.query(joints)
    
    # build graph
    source_vertex2vertex = np.concatenate([faces[:, 0], faces[:, 1], faces[:, 2]], axis=0)
    to_vertex2vertex = np.concatenate([faces[:, 1], faces[:, 2], faces[:, 0]], axis=0)
    weight_vertex2vertex = np.sqrt(((vertices[source_vertex2vertex] - vertices[to_vertex2vertex])**2).sum(axis=-1))
    graph = csr_matrix(
        (np.concatenate([weight_close, weight_vertex2vertex, weight_grid2grid, weight_grid2vertex]),
        (
            np.concatenate([source_close, source_vertex2vertex, source_grid2grid, source_grid2vertex], axis=0),
            np.concatenate([to_close, to_vertex2vertex, to_grid2grid, to_grid2vertex], axis=0)),
        ),
        shape=(N+M, N+M),
    )
    
    # get shortest path (J, N+M)
    dist_matrix = shortest_path(graph, method='D', directed=False, indices=joint_indices)
    
    # (J, N)
    dis_vertex2joint = dist_matrix[:, :N]
    unreachable = np.isinf(dis_vertex2joint).all(axis=0)
    k = min(J, 3)
    dist, idx = joint_tree.query(vertices[unreachable], k)
    
    # make sure at least one value in dis is not inf
    unreachable_indices = np.where(unreachable)[0]
    row_indices = idx
    col_indices = np.repeat(unreachable_indices, k).reshape(-1, k)
    dis_vertex2joint[row_indices, col_indices] = dist
    
    finite_vals = dis_vertex2joint[np.isfinite(dis_vertex2joint)]
    max_dis = np.max(finite_vals)
    dis_vertex2joint = np.nan_to_num(dis_vertex2joint, nan=max_dis, posinf=max_dis, neginf=max_dis)
    dis_vertex2joint = np.maximum(dis_vertex2joint, 1e-6)
    # (J, N)
    if mode == 'exp':
        skin = np.exp(-dis_vertex2joint / max_dis * 20.0)
    elif mode == 'square':
        skin = (1./((1-alpha)*dis_vertex2joint + alpha*dis_vertex2joint**2))**2
    else:
        assert False, f'invalid mode: {mode}'
    skin = skin / skin.sum(axis=0)
    # (N, J)
    skin = skin.transpose()
    return skin

def find_connected_components(vertices: ndarray, faces: ndarray) -> Tuple[int, ndarray]:
    '''
    Find connected components of a mesh.
    
    Returns:
        int: number of connected components
        ndarray: labels of connected components
    '''
    N = vertices.shape[0]
    edges = []
    for face in faces:
        v0, v1, v2 = face
        edges.append([v0, v1])
        edges.append([v1, v2])
        edges.append([v2, v0])
    
    edges = np.array(edges)
    row = edges[:, 0]
    col = edges[:, 1]
    data = np.ones(len(edges), dtype=int)
    adj_matrix = csr_matrix((data, (row, col)), shape=(N, N))
    adj_matrix = adj_matrix + adj_matrix.T
    
    tot, vertex_labels = connected_components(adj_matrix, directed=False, return_labels=True)
    face_labels = vertex_labels[faces[:, 0]]
    return tot, vertex_labels, face_labels

def compute_distances_in_components(vertices: ndarray, faces: ndarray, vertex_labels: ndarray, tot: int, k: int) -> ndarray:
    N = vertices.shape[0]
    edges = []
    weights = []
    for face in faces:
        v0, v1, v2 = face
        w01 = np.linalg.norm(vertices[v0] - vertices[v1])
        w12 = np.linalg.norm(vertices[v1] - vertices[v2])
        w20 = np.linalg.norm(vertices[v2] - vertices[v0])
        edges.extend([[v0, v1], [v1, v2], [v2, v0]])
        weights.extend([w01, w12, w20])
    
    edges = np.array(edges)
    weights = np.array(weights)
    row = edges[:, 0]
    col = edges[:, 1]
    adj_matrix = csr_matrix((weights, (row, col)), shape=(N, N))
    adj_matrix = adj_matrix + adj_matrix.T

    distance_matrix = np.full((N, k), np.inf)  # (N, k)

    for component_id in range(tot):
        component_mask = (vertex_labels == component_id)
        component_vertices_idx = np.where(component_mask)[0]
        n_component = len(component_vertices_idx)
        
        if n_component == 0:
            continue
        
        if n_component >= k:
            sampled_indices = np.random.permutation(n_component)[:k]
        else:
            sampled_indices = np.concatenate([
                np.random.permutation(n_component),
                np.random.randint(0, n_component, k - n_component)
            ])
        sampled_vertices = component_vertices_idx[sampled_indices]

        dist_matrix = shortest_path(adj_matrix, indices=sampled_vertices, directed=False)
        dist_matrix = dist_matrix[:, component_mask].T
        # normalize into [0, 1]
        max_value = dist_matrix.max()
        min_value = dist_matrix.min()
        if max_value < min_value + 1e-6:
            dist_matrix[...] = 0.
        else:
            dist_matrix = (dist_matrix - min_value) / (max_value - min_value)
        
        distance_matrix[component_mask, :] = dist_matrix
    
    return distance_matrix

def generate_spread_vectors(tot: int, dim: int, iterations: int=100, lr: float=1.0) -> ndarray:
    if tot <= 0:
        return None
    
    vectors = np.random.randn(tot, dim)
    vectors = vectors / np.linalg.norm(vectors, axis=1, keepdims=True)
    vectors = np.nan_to_num(vectors, nan=1.0, posinf=1.0, neginf=1.0)
    
    for _ in range(iterations):
        diff = vectors[np.newaxis, :, :] - vectors[:, np.newaxis, :]
        norm_sq = np.sum(diff ** 2, axis=2)
        weight = 1. / (norm_sq + 1.)
        vectors += np.sum(diff * weight[:, :, np.newaxis] * lr, axis=1)
        vectors = vectors / np.linalg.norm(vectors, axis=1, keepdims=True)
    
    return vectors