jkorstad's picture
Correctly add UniRig source files
f499d3b
import torch
import numpy as np
from numpy import ndarray
from torch import Tensor, FloatTensor
from typing import Tuple, Union
from scipy.spatial.transform import Rotation as R
from scipy.sparse import csc_matrix
import numpy as np
def quaternion_to_matrix(x, use_4x4=True) -> FloatTensor:
"""
Ref: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#quaternion_to_matrix
"""
if not isinstance(x, Tensor):
quaternions = torch.tensor(x, dtype=torch.float32)
else:
quaternions = x
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
device = quaternions.device
if use_4x4:
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32),
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32),
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32),
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32),
torch.ones(quaternions.shape[:-1], device=device, dtype=torch.float32),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (4, 4))
else:
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def axis_angle_to_quaternion(axis_angle: FloatTensor) -> FloatTensor:
"""
Ref: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#axis_angle_to_quaternion
"""
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
half_angles = angles * 0.5
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
quaternions = torch.cat(
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
)
return quaternions
def axis_angle_to_matrix(axis_angle: Union[FloatTensor, ndarray]) -> Union[FloatTensor, ndarray]:
"""
Ref: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#axis_angle_to_matrix
"""
if isinstance(axis_angle, FloatTensor):
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
else:
res = np.pad(R.from_rotvec(axis_angle).as_matrix(), ((0, 0), (0, 1), (0, 1)), 'constant', constant_values=((0, 0), (0, 0), (0, 0)))
assert res.ndim == 3
res[:, -1, -1] = 1
return res
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
if torch.is_grad_enabled():
ret[positive_mask] = torch.sqrt(x[positive_mask])
else:
ret = torch.where(positive_mask, torch.sqrt(x), ret)
return ret
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert a unit quaternion to a standard form: one in which the real
part is non negative.
Args:
quaternions: Quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Standardized quaternions as tensor of shape (..., 4).
"""
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
out = quat_candidates[
torch.nn.functional.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
return standardize_quaternion(out)
def linear_blend_skinning(
vertex: Union[FloatTensor, ndarray],
matrix_local: Union[FloatTensor, ndarray],
matrix: Union[FloatTensor, ndarray],
skin: Union[FloatTensor, ndarray],
pad: int=0,
value: float=0.,
) -> Union[FloatTensor, ndarray]:
'''
Args:
vertex: (B, N, 4-pad) or (N, 4-pad)
matrix_local: (B, J, 4, 4) or (J, 4, 4)
matrix: (B, J, 4, 4) or (J, 4, 4)
skin: (B, N, J) or (N, J), value of pseudo bones should be 0
Returns:
(B, N, 3) or (N, 3)
'''
assert vertex.shape[-1] + pad == 4
if isinstance(vertex, Tensor):
dims = vertex.dim()
elif isinstance(vertex, ndarray):
dims = vertex.ndim
else:
raise NotImplementedError()
if dims == 3: # Case: (B, N, 3+pad)
assert isinstance(vertex, Tensor)
J = matrix_local.shape[1]
# (B, J, 3+pad, N)
offset = (
matrix_local.inverse() @
torch.nn.functional.pad(vertex, (0, pad, 0, 0, 0, 0), value=value).unsqueeze(1).transpose(2, 3).repeat(1, J, 1, 1)
)
# (B, J, 4, N)
per_bone_matrix = matrix @ offset
# (B, J, 4, N)
weighted_per_bone_matrix = skin.transpose(1, 2).unsqueeze(2) * per_bone_matrix
# (B, 3, N)
g = weighted_per_bone_matrix.sum(dim=1)
# (B, 3, N)
final = g[:, 0:3, :] / (skin.transpose(1, 2).sum(dim=1) + 1e-8).unsqueeze(1)
return final.permute(0, 2, 1)
elif dims == 2: # Case: (N, 3+pad)
if isinstance(vertex, Tensor):
J = matrix_local.shape[0]
offset = (
matrix_local.inverse() @
torch.nn.functional.pad(vertex, (0, pad, 0, 0), value=value).unsqueeze(0).transpose(1, 2).repeat(J, 1, 1)
)
per_bone_matrix = matrix @ offset
weighted_per_bone_matrix = skin.transpose(0, 1).unsqueeze(1) * per_bone_matrix
g = weighted_per_bone_matrix.sum(dim=0)
final = g[0:3, :] / (skin.transpose(0, 1).sum(dim=0) + 1e-8).unsqueeze(0)
return final.permute(1, 0) # Output shape (N, 3)
else:
J = matrix_local.shape[0]
N = vertex.shape[0]
# (4, N)
padded = np.pad(vertex, ((0, 0), (0, pad)), 'constant', constant_values=(0, value)).T
# (J, 4, 4)
trans = matrix @ np.linalg.inv(matrix_local)
weighted_per_bone_matrix = []
# (J, N)
mask = (skin > 0).T
for i in range(J):
offset = np.zeros((4, N), dtype=np.float32)
offset[:, mask[i]] = (trans[i] @ padded[:, mask[i]]) * skin.T[i, mask[i]]
weighted_per_bone_matrix.append(offset)
weighted_per_bone_matrix = np.stack(weighted_per_bone_matrix)
g = np.sum(weighted_per_bone_matrix, axis=0)
final = g[:3, :] / (np.sum(skin, axis=1) + 1e-8)
return final.T
else:
assert 0, f'unsupported shape: {vertex.shape}'