jkorstad's picture
Correctly add UniRig source files
f499d3b
from collections import defaultdict
import lightning as L
import os
import torch
import numpy as np
from torch import Tensor
from typing import Dict, Union, List
from lightning.pytorch.callbacks import BasePredictionWriter
from numpy import ndarray
from ..data.raw_data import RawData
from ..data.order import OrderConfig, get_order
from ..model.spec import ModelSpec
from ..tokenizer.spec import DetokenzeOutput
class ARSystem(L.LightningModule):
def __init__(
self,
steps_per_epoch: int,
model: ModelSpec,
generate_kwargs: Dict={},
output_path: Union[str, None]=None,
record_res: Union[bool]=False,
validate_cast: str='bfloat16',
val_interval: Union[int, None]=None,
val_start_from: Union[int, None]=None,
):
super().__init__()
self.save_hyperparameters(ignore="model")
self.steps_per_epoch = steps_per_epoch
self.model = model
self.generate_kwargs = generate_kwargs
self.output_path = output_path
self.record_res = record_res
self.validate_cast = validate_cast
self.val_interval = val_interval
self.val_start_from = val_start_from
if self.record_res:
assert self.output_path is not None, "record_res is True, but output_path in ar is None"
def _predict_step(self, batch, batch_idx, dataloader_idx=None):
batch['generate_kwargs'] = self.generate_kwargs
res = self.model.predict_step(batch)
assert isinstance(res, list), f"expect type of prediction from {self.model.__class__} to be a list, found: {type(res)}"
return res
def predict_step(self, batch, batch_idx, dataloader_idx=None):
try:
prediction: List[DetokenzeOutput] = self._predict_step(batch=batch, batch_idx=batch_idx, dataloader_idx=dataloader_idx)
return prediction
except Exception as e:
print(str(e))
return []
class ARWriter(BasePredictionWriter):
def __init__(
self,
output_dir: Union[str, None],
order_config: Union[OrderConfig, None]=None,
**kwargs
):
super().__init__('batch')
self.output_dir = output_dir
self.npz_dir = kwargs.get('npz_dir', None)
self.user_mode = kwargs.get('user_mode', False)
self.output_name = kwargs.get('output_name', None) # for a single name
self.repeat = kwargs.get('repeat', 1)
self.add_num = kwargs.get('add_num', False)
self.export_npz = kwargs.get('export_npz', None)
self.export_obj = kwargs.get('export_obj', None)
self.export_fbx = kwargs.get('export_fbx', None)
self.export_pc = kwargs.get('export_pc', None)
if order_config is not None:
self.order = get_order(config=order_config)
else:
self.order = None
self._epoch = 0
def on_predict_end(self, trainer, pl_module):
if self._epoch < self.repeat - 1:
print(f"Finished prediction run {self._epoch + 1}/{self.repeat}, starting next run...")
self._epoch += 1
trainer.predict_dataloader = trainer.datamodule.predict_dataloader()
trainer.predict_loop.run()
def write_on_batch_end(self, trainer, pl_module: ARSystem, prediction: List[Dict], batch_indices, batch, batch_idx, dataloader_idx):
assert 'path' in batch
paths = batch['path']
detokenize_output_list: List[DetokenzeOutput] = prediction
vertices = batch['vertices']
origin_vertices = batch['origin_vertices']
origin_vertex_normals = batch['origin_vertex_normals']
origin_faces = batch['origin_faces']
origin_face_normals = batch['origin_face_normals']
num_points = batch['num_points']
num_faces = batch['num_faces']
if isinstance(origin_vertices, torch.Tensor):
origin_vertices = origin_vertices.detach().cpu().numpy()
if isinstance(origin_vertex_normals, torch.Tensor):
origin_vertex_normals = origin_vertex_normals.detach().cpu().numpy()
if isinstance(origin_faces, torch.Tensor):
origin_faces = origin_faces.detach().cpu().numpy()
if isinstance(origin_face_normals, torch.Tensor):
origin_face_normals = origin_face_normals.detach().cpu().numpy()
if isinstance(num_points, torch.Tensor):
num_points = num_points.detach().cpu().numpy()
if isinstance(num_faces, torch.Tensor):
num_faces = num_faces.detach().cpu().numpy()
for (id, detokenize_output) in enumerate(detokenize_output_list):
assert isinstance(detokenize_output, DetokenzeOutput), f"expect item of the list to be DetokenzeOutput, found: {type(detokenize_output)}"
def make_path(save_name: str, suffix: str, trim: bool=False):
if trim:
path = os.path.relpath(paths[id], self.npz_dir)
else:
path = paths[id]
if self.output_dir is not None:
path = os.path.join(self.output_dir, path)
if self.add_num:
path = os.path.join(path, f"{save_name}_{self._epoch}.{suffix}")
else:
path = os.path.join(path, f"{save_name}.{suffix}")
return path
num_p = num_points[id]
num_f = num_faces[id]
raw_data = RawData(
vertices=origin_vertices[id, :num_p],
vertex_normals=origin_vertex_normals[id, :num_p],
faces=origin_faces[id, :num_f],
face_normals=origin_face_normals[id, :num_f],
joints=detokenize_output.joints,
tails=detokenize_output.tails,
parents=detokenize_output.parents,
skin=None,
no_skin=detokenize_output.no_skin,
names=detokenize_output.names,
matrix_local=None,
path=None,
cls=detokenize_output.cls,
)
if not self.user_mode and self.export_npz is not None:
print(make_path(self.export_npz, 'npz'))
raw_data.save(path=make_path(self.export_npz, 'npz'))
if not self.user_mode and self.export_obj is not None:
raw_data.export_skeleton(path=make_path(self.export_obj, 'obj'))
if not self.user_mode and self.export_pc is not None:
raw_data.export_pc(path=make_path(self.export_pc, 'obj'))
if self.export_fbx is not None:
if not self.user_mode:
raw_data.export_fbx(path=make_path(self.export_fbx, 'fbx'))
else:
if self.output_name is not None:
raw_data.export_fbx(path=self.output_name)
else:
raw_data.export_fbx(path=make_path(self.export_fbx, 'fbx', trim=True))