Spaces:
Running
on
Zero
Running
on
Zero
from collections import defaultdict | |
import lightning as L | |
import os | |
import torch | |
import numpy as np | |
from torch import Tensor | |
from typing import Dict, Union, List | |
from lightning.pytorch.callbacks import BasePredictionWriter | |
from numpy import ndarray | |
from ..data.raw_data import RawData | |
from ..data.order import OrderConfig, get_order | |
from ..model.spec import ModelSpec | |
from ..tokenizer.spec import DetokenzeOutput | |
class ARSystem(L.LightningModule): | |
def __init__( | |
self, | |
steps_per_epoch: int, | |
model: ModelSpec, | |
generate_kwargs: Dict={}, | |
output_path: Union[str, None]=None, | |
record_res: Union[bool]=False, | |
validate_cast: str='bfloat16', | |
val_interval: Union[int, None]=None, | |
val_start_from: Union[int, None]=None, | |
): | |
super().__init__() | |
self.save_hyperparameters(ignore="model") | |
self.steps_per_epoch = steps_per_epoch | |
self.model = model | |
self.generate_kwargs = generate_kwargs | |
self.output_path = output_path | |
self.record_res = record_res | |
self.validate_cast = validate_cast | |
self.val_interval = val_interval | |
self.val_start_from = val_start_from | |
if self.record_res: | |
assert self.output_path is not None, "record_res is True, but output_path in ar is None" | |
def _predict_step(self, batch, batch_idx, dataloader_idx=None): | |
batch['generate_kwargs'] = self.generate_kwargs | |
res = self.model.predict_step(batch) | |
assert isinstance(res, list), f"expect type of prediction from {self.model.__class__} to be a list, found: {type(res)}" | |
return res | |
def predict_step(self, batch, batch_idx, dataloader_idx=None): | |
try: | |
prediction: List[DetokenzeOutput] = self._predict_step(batch=batch, batch_idx=batch_idx, dataloader_idx=dataloader_idx) | |
return prediction | |
except Exception as e: | |
print(str(e)) | |
return [] | |
class ARWriter(BasePredictionWriter): | |
def __init__( | |
self, | |
output_dir: Union[str, None], | |
order_config: Union[OrderConfig, None]=None, | |
**kwargs | |
): | |
super().__init__('batch') | |
self.output_dir = output_dir | |
self.npz_dir = kwargs.get('npz_dir', None) | |
self.user_mode = kwargs.get('user_mode', False) | |
self.output_name = kwargs.get('output_name', None) # for a single name | |
self.repeat = kwargs.get('repeat', 1) | |
self.add_num = kwargs.get('add_num', False) | |
self.export_npz = kwargs.get('export_npz', None) | |
self.export_obj = kwargs.get('export_obj', None) | |
self.export_fbx = kwargs.get('export_fbx', None) | |
self.export_pc = kwargs.get('export_pc', None) | |
if order_config is not None: | |
self.order = get_order(config=order_config) | |
else: | |
self.order = None | |
self._epoch = 0 | |
def on_predict_end(self, trainer, pl_module): | |
if self._epoch < self.repeat - 1: | |
print(f"Finished prediction run {self._epoch + 1}/{self.repeat}, starting next run...") | |
self._epoch += 1 | |
trainer.predict_dataloader = trainer.datamodule.predict_dataloader() | |
trainer.predict_loop.run() | |
def write_on_batch_end(self, trainer, pl_module: ARSystem, prediction: List[Dict], batch_indices, batch, batch_idx, dataloader_idx): | |
assert 'path' in batch | |
paths = batch['path'] | |
detokenize_output_list: List[DetokenzeOutput] = prediction | |
vertices = batch['vertices'] | |
origin_vertices = batch['origin_vertices'] | |
origin_vertex_normals = batch['origin_vertex_normals'] | |
origin_faces = batch['origin_faces'] | |
origin_face_normals = batch['origin_face_normals'] | |
num_points = batch['num_points'] | |
num_faces = batch['num_faces'] | |
if isinstance(origin_vertices, torch.Tensor): | |
origin_vertices = origin_vertices.detach().cpu().numpy() | |
if isinstance(origin_vertex_normals, torch.Tensor): | |
origin_vertex_normals = origin_vertex_normals.detach().cpu().numpy() | |
if isinstance(origin_faces, torch.Tensor): | |
origin_faces = origin_faces.detach().cpu().numpy() | |
if isinstance(origin_face_normals, torch.Tensor): | |
origin_face_normals = origin_face_normals.detach().cpu().numpy() | |
if isinstance(num_points, torch.Tensor): | |
num_points = num_points.detach().cpu().numpy() | |
if isinstance(num_faces, torch.Tensor): | |
num_faces = num_faces.detach().cpu().numpy() | |
for (id, detokenize_output) in enumerate(detokenize_output_list): | |
assert isinstance(detokenize_output, DetokenzeOutput), f"expect item of the list to be DetokenzeOutput, found: {type(detokenize_output)}" | |
def make_path(save_name: str, suffix: str, trim: bool=False): | |
if trim: | |
path = os.path.relpath(paths[id], self.npz_dir) | |
else: | |
path = paths[id] | |
if self.output_dir is not None: | |
path = os.path.join(self.output_dir, path) | |
if self.add_num: | |
path = os.path.join(path, f"{save_name}_{self._epoch}.{suffix}") | |
else: | |
path = os.path.join(path, f"{save_name}.{suffix}") | |
return path | |
num_p = num_points[id] | |
num_f = num_faces[id] | |
raw_data = RawData( | |
vertices=origin_vertices[id, :num_p], | |
vertex_normals=origin_vertex_normals[id, :num_p], | |
faces=origin_faces[id, :num_f], | |
face_normals=origin_face_normals[id, :num_f], | |
joints=detokenize_output.joints, | |
tails=detokenize_output.tails, | |
parents=detokenize_output.parents, | |
skin=None, | |
no_skin=detokenize_output.no_skin, | |
names=detokenize_output.names, | |
matrix_local=None, | |
path=None, | |
cls=detokenize_output.cls, | |
) | |
if not self.user_mode and self.export_npz is not None: | |
print(make_path(self.export_npz, 'npz')) | |
raw_data.save(path=make_path(self.export_npz, 'npz')) | |
if not self.user_mode and self.export_obj is not None: | |
raw_data.export_skeleton(path=make_path(self.export_obj, 'obj')) | |
if not self.user_mode and self.export_pc is not None: | |
raw_data.export_pc(path=make_path(self.export_pc, 'obj')) | |
if self.export_fbx is not None: | |
if not self.user_mode: | |
raw_data.export_fbx(path=make_path(self.export_fbx, 'fbx')) | |
else: | |
if self.output_name is not None: | |
raw_data.export_fbx(path=self.output_name) | |
else: | |
raw_data.export_fbx(path=make_path(self.export_fbx, 'fbx', trim=True)) |