jkorstad's picture
Correctly add UniRig source files
f499d3b
from abc import ABC, abstractmethod
from collections import defaultdict
from typing import Dict
import numpy as np
from numpy import ndarray
from typing import Union, List, Tuple
from dataclasses import dataclass
from ..data.exporter import Exporter
from ..data.order import OrderConfig, Order, get_order
@dataclass(frozen=True)
class TokenizerConfig():
# which tokenizer to use
method: str
# coord discrete
num_discrete: int
# normalization range
continuous_range: Tuple[float, float]
# cls token id
cls_token_id: Dict[str, int]
# parts token id
parts_token_id: Dict[str, int]
order_config: Union[OrderConfig, None]
@staticmethod
def parse(config) -> 'TokenizerConfig':
order_config = config.get('order_config', None)
return TokenizerConfig(
method=config.method,
num_discrete=config.num_discrete,
continuous_range=config.continuous_range,cls_token_id=config.cls_token_id,
parts_token_id=config.get('parts_token_id', {}),
order_config=OrderConfig.parse(order_config) if order_config is not None else None,
)
@dataclass(frozen=True)
class TokenizeInput():
# (J, 6), (parent position, position)
bones: ndarray
# (J, 3), tails of bones(this is an attribute to indicate direction, not bones[i, 3:6]). Should NOT be used for non-leaf joints.
tails: Union[ndarray, None]
# (B, J), bool, whether there is a branch, always False for root
branch: ndarray
# (J), bool, whether the bone is a leaf node (has no child)
is_leaf: ndarray
# (B, J), bool, whether the bone has skin
no_skin: Union[ndarray, None]
# string of class in tokenizer
cls: Union[str, None]
# Part token added before the i-th bone. If parts_bias[i] is None, a spring token will be added.
parts_bias: Dict[int, Union[str, None]]
@property
def num_bones(self):
return self.bones.shape[0]
@dataclass(frozen=True)
class DetokenzeOutput(Exporter):
# original tokens
tokens: ndarray
# (J, 6), (parent position, position)
bones: ndarray
# (J), parent of each bone
parents: List[Union[int, None]]
# (J, 3), tails of bones(this is an attribute to indicate direction, not bones[i, 3:6])
tails: Union[ndarray, None]
# (B, J), bool, whether the bone has skin
no_skin: Union[ndarray, None]
# string of class in tokenizer
cls: Union[str, None]
# part names in order
parts: List[str]
# names of joints
names: Union[None, List[str]]
# normalization cube
continuous_range: Tuple[float, float]
@property
def joints(self):
return self.bones[:, 3:]
@property
def p_joints(self):
return self.bones[:, :3]
@property
def num_bones(self):
return self.bones.shape[0]
def _get_parents(self) -> List[Union[int, None]]:
parents = []
for (i, bone) in enumerate(self.bones):
p_joint = bone[:3]
dis = 999999
pid = None
for j in reversed(range(i)):
n_dis = ((self.bones[j][3:] - p_joint)**2).sum()
if n_dis < dis:
pid = j
dis = n_dis
parents.append(pid)
return parents
def export_skeleton(self, path: str):
parents = self._get_parents()
self._export_skeleton(joints=self.bones[:, 3:], parents=parents, path=path)
def export_bones(self, path: str):
assert self.tails is not None, 'tails is None, cannot exporrt bones'
self._export_bones(bones=np.concatenate([self.bones[:, 3:], self.tails], axis=-1), path=path)
def export_skeleton_sequence(self, path: str):
parents = self._get_parents()
self._export_skeleton_sequence(joints=self.bones[:, 3:], parents=parents, path=path)
class TokenizerSpec(ABC):
"""
Abstract class for tokenizer
"""
def __init__(self, **kwargs):
super().__init__()
pass
@abstractmethod
def tokenize(self, input: TokenizeInput) -> ndarray:
pass
def detokenize(self, ids: ndarray, **kwargs) -> DetokenzeOutput:
raise NotImplementedError("{} has no method 'detokenize'".format(type(self).__name__))
@abstractmethod
def get_require_parts(self) -> List[str]:
"""All parts token names"""
pass
@abstractmethod
def cls_name_to_token(self, cls: str) -> int:
"""Cls name to token"""
pass
@abstractmethod
def part_name_to_token(self, part: str) -> int:
"""Part name to token"""
pass
@property
@abstractmethod
def vocab_size(self):
"""The vocabulary size"""
pass
@property
def pad(self):
raise NotImplementedError("{} has no attribute 'pad'".format(type(self).__name__))
@property
def bos(self):
raise NotImplementedError("{} has no attribute 'bos'".format(type(self).__name__))
@property
def eos(self):
raise NotImplementedError("{} has no attribute 'eos'".format(type(self).__name__))
@property
def num_discrete(self):
raise NotImplementedError("{} has no attribute 'num_discrete'".format(type(self).__name__))
@property
@abstractmethod
def continuous_range(self) -> Tuple[float, float]:
pass
def make_skeleton(
joints: ndarray,
p_joints: ndarray,
tails_dict: Dict[int, ndarray],
convert_leaf_bones_to_tails: bool,
extrude_tail_for_leaf: bool,
extrude_tail_for_branch: bool,
extrude_scale: float=0.5,
strict: bool=False,
) -> Tuple[ndarray, ndarray, List[int], List[Union[None, int]]]:
'''
Args:
joints: heads of bones
p_joints: parent position of joints
tails_dict: tail position of the i-th joint
convert_leaf_bones_to_tails: remove leaf bones and make them tails of their parents
extrude_tail_for_leaf: add a tail for leaf bone
extrude_tail_for_branch: add a tail for joint with multiple children
extrude_scale: length scale of tail offset
strict: if true, raise error when there are joints in the same location
Returns:
bones, tails, available_bones_id, parents
'''
assert (convert_leaf_bones_to_tails & extrude_tail_for_leaf)==False, 'cannot extrude tail for leaf when convert_leaf_bones_to_tails is True'
assert joints.shape[0] == p_joints.shape[0]
# build parents
bones = [] # (parent_position, position)
parents = []
for (i, joint) in enumerate(joints):
if len(bones) == 0:
bones.append(np.concatenate([joint, joint])) # root
parents.append(None)
continue
p_joint = p_joints[i]
dis = 999999
pid = None
for j in reversed(range(i)):
n_dis = ((bones[j][3:] - p_joint)**2).sum()
if n_dis < dis:
pid = j
dis = n_dis
bones.append(np.concatenate([joints[pid], joint]))
parents.append(pid)
bones = np.stack(bones)
children = defaultdict(list)
for (i, pid) in enumerate(parents):
if pid is None:
continue
children[pid].append(i)
available_bones_id = []
if convert_leaf_bones_to_tails:
for (i, pid) in enumerate(parents):
if len(children[i]) != 0:
available_bones_id.append(i)
continue
tails_dict[pid] = bones[i, 3:]
else:
available_bones_id = [i for i in range(bones.shape[0])]
# tail for leaf
for (i, pid) in enumerate(parents):
if len(children[i]) != 0:
continue
if extrude_tail_for_leaf:
d = bones[i, 3:] - bones[pid, 3:]
length = np.linalg.norm(d)
if strict:
assert length > 1e-9, 'two joints in the same point found'
elif length <= 1e-9:
d = np.array([0., 0., 1.])
tails_dict[i] = bones[i, 3:] + d * extrude_scale
else:
tails_dict[i] = bones[i, 3:]
# tail for branch
for (i, pid) in enumerate(parents):
if len(children[i]) <= 1:
continue
if extrude_tail_for_branch:
if pid is None: # root
av_len = 0
for child in children[i]:
av_len += np.linalg.norm(bones[i, 3:] - bones[child, 3:])
av_len /= len(children[i])
d = bones[i, 3:] + np.array([0., 0., extrude_scale * av_len])
else:
d = bones[i, 3:] - bones[pid, 3:]
length = np.linalg.norm(d)
if strict:
assert length > 1e-9, 'two joints in the same point found'
elif length <= 1e-9:
d = np.array([0., 0., 1.])
tails_dict[i] = bones[i, 3:] + d * extrude_scale
else:
tails_dict[i] = bones[i, 3:]
# assign new tail
for (i, pid) in enumerate(parents):
if len(children[i]) != 1:
continue
child = children[i][0]
tails_dict[i] = bones[child, 3:]
tails = []
for i in range(bones.shape[0]):
tails.append(tails_dict[i])
tails = np.stack(tails)
return bones, tails, available_bones_id, parents