Mesh_Rigger / UniRig /src /tokenizer /tokenizer_part.py
jkorstad's picture
Correctly add UniRig source files
f499d3b
import numpy as np
from numpy import ndarray
from typing import Dict, Tuple, Union, List
from .spec import TokenizerSpec, TokenizeInput, DetokenzeOutput, TokenizerConfig
from .spec import make_skeleton
from ..data.order import get_order
class TokenizerPart(TokenizerSpec):
def __init__(
self,
config: TokenizerConfig,
):
super().__init__()
self._num_discrete = config.num_discrete
self._continuous_range = config.continuous_range
self.cls_token_id = config.cls_token_id.copy()
self.parts_token_id = config.parts_token_id.copy()
self.order = get_order(config.order_config)
_offset = config.num_discrete
self.token_id_branch = _offset + 0
self.token_id_bos = _offset + 1
self.token_id_eos = _offset + 2
self.token_id_pad = _offset + 3
_offset += 4
self.token_id_spring = _offset + 0
_offset += 1
assert None not in self.parts_token_id
for i in self.parts_token_id:
self.parts_token_id[i] += _offset
_offset += len(self.parts_token_id)
self.token_id_cls_none = _offset + 0
_offset += 1
for i in self.cls_token_id:
self.cls_token_id[i] += _offset
_offset += len(self.cls_token_id)
self._vocab_size = _offset
self.parts_token_id_name = [x for x in self.parts_token_id]
self.part_token_to_name = {v: k for k, v in self.parts_token_id.items()}
assert len(self.part_token_to_name) == len(self.parts_token_id), 'names with same token found in parts_token_id'
self.part_token_to_name[self.token_id_spring] = None
self.cls_token_to_name = {v: k for k, v in self.cls_token_id.items()}
assert len(self.cls_token_to_name) == len(self.cls_token_id), 'names with same token found in cls_token_id'
def cls_name_to_token(self, cls: str) -> int:
if cls not in self.cls_token_id:
return self.token_id_cls_none
return self.cls_token_id[cls]
def part_name_to_token(self, part: str) -> int:
assert part in self.parts_token_id, f"do not find part name `{part}` in tokenizer"
return self.parts_token_id[part]
def tokenize(self, input: TokenizeInput) -> ndarray:
num_bones = input.num_bones
bones = discretize(t=input.bones, continuous_range=self.continuous_range, num_discrete=self.num_discrete)
tails = discretize(t=input.tails, continuous_range=self.continuous_range, num_discrete=self.num_discrete)
branch = input.branch
is_leaf = input.is_leaf
tokens = [self.token_id_bos]
if input.cls is None or input.cls not in self.cls_token_id:
tokens.append(self.token_id_cls_none)
else:
tokens.append(self.cls_token_id[input.cls])
use_leaf = False
for i in range(num_bones):
# add parts token id
if i in input.parts_bias:
part = input.parts_bias[i]
if part is None:
tokens.append(self.token_id_spring)
else:
assert part in self.parts_token_id, f"do not find part name {part} in tokenizer {self.__class__}"
tokens.append(self.parts_token_id[part])
if branch[i]:
tokens.append(self.token_id_branch)
tokens.append(bones[i, 0])
tokens.append(bones[i, 1])
tokens.append(bones[i, 2])
tokens.append(bones[i, 3])
tokens.append(bones[i, 4])
tokens.append(bones[i, 5])
else:
tokens.append(bones[i, 3])
tokens.append(bones[i, 4])
tokens.append(bones[i, 5])
tokens.append(self.token_id_eos)
return np.array(tokens, dtype=np.int64)
def detokenize(self, ids: ndarray, **kwargs) -> DetokenzeOutput:
assert isinstance(ids, ndarray), 'expect ids to be ndarray'
if ids[0] != self.token_id_bos:
raise ValueError(f"first token is not bos")
trailing_pad = 0
while trailing_pad < ids.shape[0] and ids[-trailing_pad-1] == self.token_id_pad:
trailing_pad += 1
if ids[-1-trailing_pad] != self.token_id_eos:
raise ValueError(f"last token is not eos")
ids = ids[1:-1-trailing_pad]
joints = []
p_joints = []
tails_dict = {}
parts = []
i = 0
is_branch = False
last_joint = None
num_bones = 0
while i < len(ids):
if ids[i] < self.num_discrete:
if is_branch:
p_joint = undiscretize(t=ids[i:i+3], continuous_range=self.continuous_range, num_discrete=self.num_discrete)
current_joint = undiscretize(t=ids[i+3:i+6], continuous_range=self.continuous_range, num_discrete=self.num_discrete)
joints.append(current_joint)
p_joints.append(p_joint)
i += 6
else:
current_joint = undiscretize(t=ids[i:i+3], continuous_range=self.continuous_range, num_discrete=self.num_discrete)
joints.append(current_joint)
if len(p_joints) == 0: # root
p_joints.append(current_joint)
p_joint = current_joint
else:
assert last_joint is not None
p_joints.append(last_joint)
p_joint = last_joint
i += 3
if last_joint is not None:
tails_dict[num_bones-1] = current_joint
last_joint = current_joint
num_bones += 1
is_branch = False
elif ids[i]==self.token_id_branch:
is_branch = True
last_joint = None
i += 1
elif ids[i]==self.token_id_spring or ids[i] in self.parts_token_id.values():
parts.append(self.part_token_to_name[ids[i]])
i += 1
elif ids[i] in self.cls_token_id.values():
cls = ids[i]
i += 1
elif ids[i] == self.token_id_cls_none:
cls = None
i += 1
else:
raise ValueError(f"unexpected token found: {ids[i]}")
joints = np.stack(joints)
p_joints = np.stack(p_joints)
# leaf is ignored in this tokenizer so need to extrude tails for leaf and branch
bones, tails, available_bones_id, parents = make_skeleton(
joints=joints,
p_joints=p_joints,
tails_dict=tails_dict,
convert_leaf_bones_to_tails=False,
extrude_tail_for_leaf=True,
extrude_tail_for_branch=True,
)
bones = bones[available_bones_id]
tails = tails[available_bones_id]
if cls in self.cls_token_to_name:
cls = self.cls_token_to_name[cls]
else:
cls = None
if self.order is not None:
names = self.order.make_names(cls=cls, parts=parts, num_bones=num_bones)
else:
names = [f"bone_{i}" for i in range(num_bones)]
return DetokenzeOutput(
tokens=ids,
parents=parents,
bones=bones,
tails=tails,
no_skin=None,
cls=cls,
parts=parts,
names=names,
continuous_range=self.continuous_range,
)
def get_require_parts(self) -> List[str]:
return self.parts_token_id_name
@property
def vocab_size(self):
return self._vocab_size
@property
def pad(self):
return self.token_id_pad
@property
def bos(self):
return self.token_id_bos
@property
def eos(self):
return self.token_id_eos
@property
def num_discrete(self):
return self._num_discrete
@property
def continuous_range(self) -> Tuple[float, float]:
return self._continuous_range
def discretize(
t: ndarray,
continuous_range: Tuple[float, float],
num_discrete: int,
) -> ndarray:
lo, hi = continuous_range
assert hi >= lo
t = (t - lo) / (hi - lo)
t *= num_discrete
return np.clip(t.round(), 0, num_discrete - 1).astype(np.int64)
def undiscretize(
t: ndarray,
continuous_range: Tuple[float, float],
num_discrete: int,
) -> ndarray:
lo, hi = continuous_range
assert hi >= lo
t = t.astype(np.float32) + 0.5
t /= num_discrete
return t * (hi - lo) + lo