jkorstad commited on
Commit
476fd71
·
unverified ·
1 Parent(s): f4d1d11

Update requirements.txt

Browse files
Files changed (1) hide show
  1. requirements.txt +45 -16
requirements.txt CHANGED
@@ -1,16 +1,45 @@
1
- --find-links https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py39_cu113_pyt1121/download.html
2
- torch==1.12.1+cu113
3
- torchvision==0.13.1+cu113
4
- pytorch3d==0.7.2
5
- gradio>=4.20.0,<5.0.0
6
- trimesh==3.15.2
7
- numpy==1.23.1
8
- scipy==1.9.1
9
- joblib==1.2.0
10
- smplx==0.1.28
11
- pyrender==0.1.45
12
- chumpy==0.70
13
- tqdm==4.64.0
14
- scikit-image==0.19.3
15
- opencv-python-headless # For cv2, a dependency of UniRig's utils
16
- Pillow # For PIL.Image, used in UniRig's utils
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PyTorch (UniRig: >=2.3.1)
2
+ torch>=2.3.1
3
+ torchvision>=0.18.1 # Compatible with torch 2.3.1
4
+
5
+ # PyTorch Geometric libraries (for CUDA 12.1, matching PyTorch 2.3.1)
6
+ # Ensure the URL is correct and accessible at build time.
7
+ # Pip will use this link to find the wheels.
8
+ # --find-links is an alternative way to specify this if direct install fails.
9
+ torch-scatter -f https://data.pyg.org/whl/torch-2.3.1+cu121.html
10
+ torch-cluster -f https://data.pyg.org/whl/torch-2.3.1+cu121.html
11
+
12
+ # Spconv (for CUDA 12.1)
13
+ # UniRig's instructions: python -m pip install spconv-{you-cuda-version}
14
+ # This translates to the package name spconv-cu121 for pip.
15
+ spconv-cu121
16
+
17
+ # Numpy (UniRig: 1.26.4)
18
+ numpy==1.26.4
19
+
20
+ # Gradio
21
+ gradio>=4.29.0,<5.0.0 # Using a recent Gradio 4.x version
22
+
23
+ # Dependencies from UniRig's official requirements.txt
24
+ # (https://github.com/VAST-AI-Research/UniRig/blob/main/requirements.txt)
25
+ trimesh
26
+ scipy
27
+ smplx
28
+ pyrender
29
+ chumpy
30
+ opencv-python # UniRig uses this; not headless. Ensure Xvfb etc. from packages.txt are present.
31
+ Pillow
32
+ pyquaternion
33
+ pytorch-lightning # May mostly be for training, but included for UniRig compatibility
34
+ hydra-core # Crucial for running UniRig's scripts/modules
35
+ # wandb # For experiment tracking, likely not essential for deployed app, can be commented if causing issues
36
+ rich # For nice console outputs, used by UniRig scripts
37
+ distinctipy
38
+ scikit-image
39
+ mediapipe
40
+
41
+ # Add UniRig itself if installing from a local clone within the Space
42
+ # If you place the UniRig cloned repo in the root of your space,
43
+ # you can install it in editable mode or add its path.
44
+ # For simplicity with Hugging Face Spaces, we'll add its path in app.py
45
+ # and rely on its scripts being callable via `python -m`.