Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,7 @@ import sys
|
|
5 |
import tempfile
|
6 |
import shutil
|
7 |
import subprocess
|
8 |
-
import spaces
|
9 |
-
# from huggingface_hub import HfApi, snapshot_download # For future model management if needed
|
10 |
-
# import spaces # For @spaces.GPU decorator if you add it
|
11 |
|
12 |
# --- Configuration ---
|
13 |
# Path to the cloned UniRig repository directory within the Space
|
@@ -25,27 +23,40 @@ if DEVICE.type == 'cuda':
|
|
25 |
else:
|
26 |
print("Warning: CUDA not available or not detected by PyTorch. UniRig performance will be severely impacted.")
|
27 |
|
28 |
-
@spaces.GPU
|
29 |
-
def run_unirig_command(
|
30 |
-
"""
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
print(f"Running {step_name}: {' '.join(cmd)}")
|
36 |
|
37 |
process_env = os.environ.copy()
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
existing_pythonpath = process_env.get('PYTHONPATH', '')
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
print(f"Set PYTHONPATH for subprocess: {process_env['PYTHONPATH']}")
|
45 |
|
46 |
|
47 |
try:
|
48 |
-
# Execute the command from the UniRig directory
|
|
|
|
|
49 |
result = subprocess.run(cmd, cwd=UNIRIG_REPO_DIR, capture_output=True, text=True, check=True, env=process_env)
|
50 |
print(f"{step_name} STDOUT:\n{result.stdout}")
|
51 |
if result.stderr:
|
@@ -60,87 +71,92 @@ def run_unirig_command(command_args, step_name):
|
|
60 |
error_summary = e.stderr.splitlines()[-5:] # Last 5 lines of stderr
|
61 |
raise gr.Error(f"Error in UniRig {step_name}. Details: {' '.join(error_summary)}")
|
62 |
except FileNotFoundError:
|
63 |
-
|
64 |
-
|
|
|
65 |
except Exception as e_general:
|
66 |
print(f"An unexpected Python exception occurred in run_unirig_command for {step_name}: {e_general}")
|
67 |
raise gr.Error(f"Unexpected Python error during {step_name}: {str(e_general)[:500]}")
|
68 |
|
69 |
|
70 |
-
|
71 |
-
@spaces.GPU
|
72 |
def rig_glb_mesh_multistep(input_glb_file_obj):
|
73 |
"""
|
74 |
Takes an input GLB file object (from gr.File with type="filepath"),
|
75 |
-
rigs it using the new UniRig multi-step process,
|
76 |
and returns the path to the final rigged GLB file.
|
77 |
"""
|
78 |
if not os.path.isdir(UNIRIG_REPO_DIR):
|
79 |
raise gr.Error(f"UniRig repository not found at {UNIRIG_REPO_DIR}. Cannot proceed. Please check Space setup.")
|
80 |
|
81 |
if input_glb_file_obj is None:
|
82 |
-
# This case should ideally be handled by Gradio's input validation if `allow_none=False` (default)
|
83 |
raise gr.Error("No input file provided. Please upload a .glb mesh.")
|
84 |
|
85 |
-
|
86 |
-
input_glb_path = input_glb_file_obj
|
87 |
print(f"Input GLB path received: {input_glb_path}")
|
88 |
|
89 |
# Create a dedicated temporary directory for all intermediate and final files
|
|
|
90 |
processing_temp_dir = tempfile.mkdtemp(prefix="unirig_processing_")
|
91 |
print(f"Using temporary processing directory: {processing_temp_dir}")
|
92 |
|
93 |
try:
|
94 |
base_name = os.path.splitext(os.path.basename(input_glb_path))[0]
|
95 |
|
96 |
-
#
|
97 |
-
|
|
|
|
|
|
|
|
|
98 |
print("Step 1: Predicting Skeleton...")
|
99 |
-
|
100 |
-
"
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
if not os.path.exists(
|
106 |
raise gr.Error("Skeleton prediction failed to produce an output file. Check logs for UniRig errors.")
|
107 |
|
108 |
-
# Step 2: Skinning Weight Prediction
|
109 |
-
temp_skin_path = os.path.join(processing_temp_dir, f"{base_name}_skin.fbx")
|
110 |
print("Step 2: Predicting Skinning Weights...")
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
118 |
raise gr.Error("Skinning prediction failed to produce an output file. Check logs for UniRig errors.")
|
119 |
|
120 |
-
# Step 3: Merge Skeleton/Skin with Original Mesh
|
121 |
-
final_rigged_glb_path = os.path.join(processing_temp_dir, f"{base_name}_rigged_final.glb")
|
122 |
print("Step 3: Merging Results...")
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
130 |
raise gr.Error("Merging process failed to produce the final rigged GLB file. Check logs for UniRig errors.")
|
131 |
|
132 |
-
|
133 |
-
# Gradio's gr.Model3D output component will handle serving this file.
|
134 |
-
return final_rigged_glb_path
|
135 |
|
136 |
-
except gr.Error:
|
137 |
-
if os.path.exists(processing_temp_dir):
|
138 |
shutil.rmtree(processing_temp_dir)
|
139 |
print(f"Cleaned up temporary directory: {processing_temp_dir}")
|
140 |
raise
|
141 |
except Exception as e:
|
142 |
print(f"An unexpected error occurred in rig_glb_mesh_multistep: {e}")
|
143 |
-
if os.path.exists(processing_temp_dir):
|
144 |
shutil.rmtree(processing_temp_dir)
|
145 |
print(f"Cleaned up temporary directory: {processing_temp_dir}")
|
146 |
raise gr.Error(f"An unexpected error occurred during processing: {str(e)[:500]}")
|
@@ -154,17 +170,14 @@ theme = gr.themes.Soft(
|
|
154 |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
155 |
)
|
156 |
|
157 |
-
|
158 |
-
if not os.path.isdir(UNIRIG_REPO_DIR) and __name__ == "__main__": # Check only if running as main script
|
159 |
print(f"CRITICAL STARTUP ERROR: UniRig repository not found at {UNIRIG_REPO_DIR}. The application will not work.")
|
160 |
|
161 |
-
# Define the interface
|
162 |
-
# Note: The @spaces.GPU decorator would go above the function `rig_glb_mesh_multistep`
|
163 |
iface = gr.Interface(
|
164 |
fn=rig_glb_mesh_multistep,
|
165 |
inputs=gr.File(
|
166 |
label="Upload .glb Mesh File",
|
167 |
-
type="filepath"
|
168 |
),
|
169 |
outputs=gr.Model3D(
|
170 |
label="Rigged 3D Model (.glb)",
|
@@ -172,7 +185,7 @@ iface = gr.Interface(
|
|
172 |
),
|
173 |
title="UniRig Auto-Rigger (Python 3.11 / PyTorch 2.3+)",
|
174 |
description=(
|
175 |
-
"Upload a 3D mesh in `.glb` format. This application uses the latest UniRig to automatically rig the mesh.\n"
|
176 |
"The process involves: 1. Skeleton Prediction, 2. Skinning Weight Prediction, 3. Merging.\n"
|
177 |
"This may take several minutes. Ensure your GLB has clean geometry.\n"
|
178 |
f"Running on: {str(DEVICE).upper()}. UniRig repo expected at: '{os.path.basename(UNIRIG_REPO_DIR)}'.\n"
|
@@ -180,12 +193,10 @@ iface = gr.Interface(
|
|
180 |
),
|
181 |
cache_examples=False,
|
182 |
theme=theme
|
183 |
-
# allow_flagging="never" # Removed as it's deprecated in Gradio 4.x and default behavior is usually no flagging.
|
184 |
-
# If specific flagging control is needed, use `flagging_options` or similar.
|
185 |
)
|
186 |
|
187 |
if __name__ == "__main__":
|
188 |
if not os.path.isdir(UNIRIG_REPO_DIR):
|
189 |
print(f"CRITICAL: UniRig repository not found at {UNIRIG_REPO_DIR}. Ensure it's cloned in the Space's root.")
|
190 |
|
191 |
-
iface.launch()
|
|
|
5 |
import tempfile
|
6 |
import shutil
|
7 |
import subprocess
|
8 |
+
import spaces # Ensure spaces is imported if @spaces.GPU is used
|
|
|
|
|
9 |
|
10 |
# --- Configuration ---
|
11 |
# Path to the cloned UniRig repository directory within the Space
|
|
|
23 |
else:
|
24 |
print("Warning: CUDA not available or not detected by PyTorch. UniRig performance will be severely impacted.")
|
25 |
|
26 |
+
@spaces.GPU # Decorator for ZeroGPU
|
27 |
+
def run_unirig_command(command_list, step_name):
|
28 |
+
"""
|
29 |
+
Helper function to run UniRig commands (now expecting bash scripts) using subprocess.
|
30 |
+
command_list: The full command and its arguments, e.g., ["bash", "script.sh", "--arg", "value"]
|
31 |
+
"""
|
32 |
+
# The command_list is now expected to be the full command, e.g., starting with "bash"
|
33 |
+
cmd = command_list
|
34 |
|
35 |
print(f"Running {step_name}: {' '.join(cmd)}")
|
36 |
|
37 |
process_env = os.environ.copy()
|
38 |
|
39 |
+
# Determine the path to the 'src' directory within UniRig, where the 'unirig' package resides.
|
40 |
+
unirig_src_dir = os.path.join(UNIRIG_REPO_DIR, "src")
|
41 |
+
|
42 |
+
# Explicitly add UNIRIG_REPO_DIR/src to PYTHONPATH for the subprocess.
|
43 |
+
# The bash scripts will internally call Python, which needs to find the 'unirig' package.
|
44 |
+
# Also, keep UNIRIG_REPO_DIR itself in case some scripts or modules there are run directly
|
45 |
+
# or expect the project root to be in PYTHONPATH.
|
46 |
existing_pythonpath = process_env.get('PYTHONPATH', '')
|
47 |
+
new_pythonpath_parts = [unirig_src_dir, UNIRIG_REPO_DIR] # UniRig/src first, then UniRig/
|
48 |
+
if existing_pythonpath:
|
49 |
+
# Prepend our paths to existing PYTHONPATH
|
50 |
+
new_pythonpath_parts.extend(existing_pythonpath.split(os.pathsep))
|
51 |
+
|
52 |
+
process_env["PYTHONPATH"] = os.pathsep.join(filter(None, new_pythonpath_parts)) # filter(None,...) handles empty existing_pythonpath
|
53 |
print(f"Set PYTHONPATH for subprocess: {process_env['PYTHONPATH']}")
|
54 |
|
55 |
|
56 |
try:
|
57 |
+
# Execute the command from the UniRig directory (UNIRIG_REPO_DIR)
|
58 |
+
# This is crucial for the bash scripts to find their relative paths (e.g., to Python scripts)
|
59 |
+
# and for any underlying Python/Hydra calls to find configurations (e.g., in UniRig/configs/)
|
60 |
result = subprocess.run(cmd, cwd=UNIRIG_REPO_DIR, capture_output=True, text=True, check=True, env=process_env)
|
61 |
print(f"{step_name} STDOUT:\n{result.stdout}")
|
62 |
if result.stderr:
|
|
|
71 |
error_summary = e.stderr.splitlines()[-5:] # Last 5 lines of stderr
|
72 |
raise gr.Error(f"Error in UniRig {step_name}. Details: {' '.join(error_summary)}")
|
73 |
except FileNotFoundError:
|
74 |
+
# This error means the executable (e.g., "bash" or the script itself) was not found.
|
75 |
+
print(f"ERROR: Could not find executable or script for {step_name}. Command: {' '.join(cmd)}. Is UniRig cloned correctly and 'bash' available?")
|
76 |
+
raise gr.Error(f"Setup error for UniRig {step_name}. Check server logs, UniRig directory structure, and script paths.")
|
77 |
except Exception as e_general:
|
78 |
print(f"An unexpected Python exception occurred in run_unirig_command for {step_name}: {e_general}")
|
79 |
raise gr.Error(f"Unexpected Python error during {step_name}: {str(e_general)[:500]}")
|
80 |
|
81 |
|
82 |
+
@spaces.GPU # Decorator for ZeroGPU
|
|
|
83 |
def rig_glb_mesh_multistep(input_glb_file_obj):
|
84 |
"""
|
85 |
Takes an input GLB file object (from gr.File with type="filepath"),
|
86 |
+
rigs it using the new UniRig multi-step process by calling its bash scripts,
|
87 |
and returns the path to the final rigged GLB file.
|
88 |
"""
|
89 |
if not os.path.isdir(UNIRIG_REPO_DIR):
|
90 |
raise gr.Error(f"UniRig repository not found at {UNIRIG_REPO_DIR}. Cannot proceed. Please check Space setup.")
|
91 |
|
92 |
if input_glb_file_obj is None:
|
|
|
93 |
raise gr.Error("No input file provided. Please upload a .glb mesh.")
|
94 |
|
95 |
+
input_glb_path = input_glb_file_obj # This is the absolute path from gr.File(type="filepath")
|
|
|
96 |
print(f"Input GLB path received: {input_glb_path}")
|
97 |
|
98 |
# Create a dedicated temporary directory for all intermediate and final files
|
99 |
+
# The output paths for UniRig scripts will point into this directory.
|
100 |
processing_temp_dir = tempfile.mkdtemp(prefix="unirig_processing_")
|
101 |
print(f"Using temporary processing directory: {processing_temp_dir}")
|
102 |
|
103 |
try:
|
104 |
base_name = os.path.splitext(os.path.basename(input_glb_path))[0]
|
105 |
|
106 |
+
# Define absolute paths for intermediate files within the processing_temp_dir
|
107 |
+
abs_skeleton_output_path = os.path.join(processing_temp_dir, f"{base_name}_skeleton.fbx")
|
108 |
+
abs_skin_output_path = os.path.join(processing_temp_dir, f"{base_name}_skin.fbx")
|
109 |
+
abs_final_rigged_glb_path = os.path.join(processing_temp_dir, f"{base_name}_rigged_final.glb")
|
110 |
+
|
111 |
+
# Step 1: Skeleton Prediction using generate_skeleton.sh
|
112 |
print("Step 1: Predicting Skeleton...")
|
113 |
+
skeleton_cmd = [
|
114 |
+
"bash", "launch/inference/generate_skeleton.sh",
|
115 |
+
"--input", input_glb_path, # Input is the original GLB
|
116 |
+
"--output", abs_skeleton_output_path
|
117 |
+
]
|
118 |
+
run_unirig_command(skeleton_cmd, "Skeleton Prediction")
|
119 |
+
if not os.path.exists(abs_skeleton_output_path):
|
120 |
raise gr.Error("Skeleton prediction failed to produce an output file. Check logs for UniRig errors.")
|
121 |
|
122 |
+
# Step 2: Skinning Weight Prediction using generate_skin.sh
|
|
|
123 |
print("Step 2: Predicting Skinning Weights...")
|
124 |
+
# generate_skin.sh requires the skeleton from step 1 as --input,
|
125 |
+
# and the original mesh as --source.
|
126 |
+
skin_cmd = [
|
127 |
+
"bash", "launch/inference/generate_skin.sh",
|
128 |
+
"--input", abs_skeleton_output_path, # Input is the skeleton FBX from previous step
|
129 |
+
"--source", input_glb_path, # Source is the original GLB mesh
|
130 |
+
"--output", abs_skin_output_path
|
131 |
+
]
|
132 |
+
run_unirig_command(skin_cmd, "Skinning Prediction")
|
133 |
+
if not os.path.exists(abs_skin_output_path):
|
134 |
raise gr.Error("Skinning prediction failed to produce an output file. Check logs for UniRig errors.")
|
135 |
|
136 |
+
# Step 3: Merge Skeleton/Skin with Original Mesh using merge.sh
|
|
|
137 |
print("Step 3: Merging Results...")
|
138 |
+
# merge.sh requires the skinned FBX as --source (which contains skeleton and weights)
|
139 |
+
# and the original GLB as --target.
|
140 |
+
merge_cmd = [
|
141 |
+
"bash", "launch/inference/merge.sh",
|
142 |
+
"--source", abs_skin_output_path, # Source is the skinned FBX from previous step
|
143 |
+
"--target", input_glb_path, # Target is the original GLB mesh
|
144 |
+
"--output", abs_final_rigged_glb_path
|
145 |
+
]
|
146 |
+
run_unirig_command(merge_cmd, "Merging")
|
147 |
+
if not os.path.exists(abs_final_rigged_glb_path):
|
148 |
raise gr.Error("Merging process failed to produce the final rigged GLB file. Check logs for UniRig errors.")
|
149 |
|
150 |
+
return abs_final_rigged_glb_path
|
|
|
|
|
151 |
|
152 |
+
except gr.Error:
|
153 |
+
if os.path.exists(processing_temp_dir):
|
154 |
shutil.rmtree(processing_temp_dir)
|
155 |
print(f"Cleaned up temporary directory: {processing_temp_dir}")
|
156 |
raise
|
157 |
except Exception as e:
|
158 |
print(f"An unexpected error occurred in rig_glb_mesh_multistep: {e}")
|
159 |
+
if os.path.exists(processing_temp_dir):
|
160 |
shutil.rmtree(processing_temp_dir)
|
161 |
print(f"Cleaned up temporary directory: {processing_temp_dir}")
|
162 |
raise gr.Error(f"An unexpected error occurred during processing: {str(e)[:500]}")
|
|
|
170 |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
171 |
)
|
172 |
|
173 |
+
if not os.path.isdir(UNIRIG_REPO_DIR) and __name__ == "__main__":
|
|
|
174 |
print(f"CRITICAL STARTUP ERROR: UniRig repository not found at {UNIRIG_REPO_DIR}. The application will not work.")
|
175 |
|
|
|
|
|
176 |
iface = gr.Interface(
|
177 |
fn=rig_glb_mesh_multistep,
|
178 |
inputs=gr.File(
|
179 |
label="Upload .glb Mesh File",
|
180 |
+
type="filepath"
|
181 |
),
|
182 |
outputs=gr.Model3D(
|
183 |
label="Rigged 3D Model (.glb)",
|
|
|
185 |
),
|
186 |
title="UniRig Auto-Rigger (Python 3.11 / PyTorch 2.3+)",
|
187 |
description=(
|
188 |
+
"Upload a 3D mesh in `.glb` format. This application uses the latest UniRig to automatically rig the mesh by calling its provided bash scripts.\n"
|
189 |
"The process involves: 1. Skeleton Prediction, 2. Skinning Weight Prediction, 3. Merging.\n"
|
190 |
"This may take several minutes. Ensure your GLB has clean geometry.\n"
|
191 |
f"Running on: {str(DEVICE).upper()}. UniRig repo expected at: '{os.path.basename(UNIRIG_REPO_DIR)}'.\n"
|
|
|
193 |
),
|
194 |
cache_examples=False,
|
195 |
theme=theme
|
|
|
|
|
196 |
)
|
197 |
|
198 |
if __name__ == "__main__":
|
199 |
if not os.path.isdir(UNIRIG_REPO_DIR):
|
200 |
print(f"CRITICAL: UniRig repository not found at {UNIRIG_REPO_DIR}. Ensure it's cloned in the Space's root.")
|
201 |
|
202 |
+
iface.launch()
|