import gradio as gr import torch import os import sys import tempfile import shutil import subprocess import spaces # --- Configuration --- # Path to the cloned UniRig repository directory within the Space UNIRIG_REPO_DIR = os.path.join(os.path.dirname(__file__), "UniRig") # Path to the setup script SETUP_SCRIPT = os.path.join(os.path.dirname(__file__), "setup_blender.sh") # Check if Blender is installed if not os.path.exists("/usr/local/bin/blender"): print("Blender not found. Installing...") subprocess.run(["bash", SETUP_SCRIPT], check=True) else: print("Blender is already installed.") if not os.path.isdir(UNIRIG_REPO_DIR): print(f"ERROR: UniRig repository not found at {UNIRIG_REPO_DIR}. Please clone it there.") # Consider raising an error or displaying it in the UI if UniRig is critical for startup DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {DEVICE}") if DEVICE.type == 'cuda': print(f"CUDA Device Name: {torch.cuda.get_device_name(0)}") print(f"CUDA Version: {torch.version.cuda}") else: print("Warning: CUDA not available or not detected by PyTorch. UniRig performance will be severely impacted.") @spaces.GPU # Decorator for ZeroGPU def run_unirig_command(command_list, step_name): """ Helper function to run UniRig commands (now expecting bash scripts) using subprocess. command_list: The full command and its arguments, e.g., ["bash", "script.sh", "--arg", "value"] """ # The command_list is now expected to be the full command, e.g., starting with "bash" cmd = command_list print(f"Running {step_name}: {' '.join(cmd)}") process_env = os.environ.copy() # Determine the path to the 'src' directory within UniRig, where the 'unirig' package resides. unirig_src_dir = os.path.join(UNIRIG_REPO_DIR, "src") # Explicitly add UNIRIG_REPO_DIR/src to PYTHONPATH for the subprocess. # The bash scripts will internally call Python, which needs to find the 'unirig' package. # Also, keep UNIRIG_REPO_DIR itself in case some scripts or modules there are run directly # or expect the project root to be in PYTHONPATH. existing_pythonpath = process_env.get('PYTHONPATH', '') new_pythonpath_parts = [unirig_src_dir, UNIRIG_REPO_DIR] # UniRig/src first, then UniRig/ if existing_pythonpath: # Prepend our paths to existing PYTHONPATH new_pythonpath_parts.extend(existing_pythonpath.split(os.pathsep)) process_env["PYTHONPATH"] = os.pathsep.join(filter(None, new_pythonpath_parts)) # filter(None,...) handles empty existing_pythonpath print(f"Set PYTHONPATH for subprocess: {process_env['PYTHONPATH']}") try: # Execute the command from the UniRig directory (UNIRIG_REPO_DIR) # This is crucial for the bash scripts to find their relative paths (e.g., to Python scripts) # and for any underlying Python/Hydra calls to find configurations (e.g., in UniRig/configs/) result = subprocess.run(cmd, cwd=UNIRIG_REPO_DIR, capture_output=True, text=True, check=True, env=process_env) print(f"{step_name} STDOUT:\n{result.stdout}") if result.stderr: print(f"{step_name} STDERR (non-fatal or warnings):\n{result.stderr}") except subprocess.CalledProcessError as e: print(f"ERROR during {step_name}:") print(f"Command: {' '.join(e.cmd)}") print(f"Return code: {e.returncode}") print(f"Stdout: {e.stdout}") print(f"Stderr: {e.stderr}") # Provide a more user-friendly error, potentially masking long tracebacks error_summary = e.stderr.splitlines()[-5:] # Last 5 lines of stderr raise gr.Error(f"Error in UniRig {step_name}. Details: {' '.join(error_summary)}") except FileNotFoundError: # This error means the executable (e.g., "bash" or the script itself) was not found. print(f"ERROR: Could not find executable or script for {step_name}. Command: {' '.join(cmd)}. Is UniRig cloned correctly and 'bash' available?") raise gr.Error(f"Setup error for UniRig {step_name}. Check server logs, UniRig directory structure, and script paths.") except Exception as e_general: print(f"An unexpected Python exception occurred in run_unirig_command for {step_name}: {e_general}") raise gr.Error(f"Unexpected Python error during {step_name}: {str(e_general)[:500]}") @spaces.GPU # Decorator for ZeroGPU def rig_glb_mesh_multistep(input_glb_file_obj): """ Takes an input GLB file object (from gr.File with type="filepath"), rigs it using the new UniRig multi-step process by calling its bash scripts, and returns the path to the final rigged GLB file. """ if not os.path.isdir(UNIRIG_REPO_DIR): raise gr.Error(f"UniRig repository not found at {UNIRIG_REPO_DIR}. Cannot proceed. Please check Space setup.") if input_glb_file_obj is None: raise gr.Error("No input file provided. Please upload a .glb mesh.") input_glb_path = input_glb_file_obj # This is the absolute path from gr.File(type="filepath") print(f"Input GLB path received: {input_glb_path}") # Create a dedicated temporary directory for all intermediate and final files # The output paths for UniRig scripts will point into this directory. processing_temp_dir = tempfile.mkdtemp(prefix="unirig_processing_") print(f"Using temporary processing directory: {processing_temp_dir}") try: base_name = os.path.splitext(os.path.basename(input_glb_path))[0] # Define absolute paths for intermediate files within the processing_temp_dir abs_skeleton_output_path = os.path.join(processing_temp_dir, f"{base_name}_skeleton.fbx") abs_skin_output_path = os.path.join(processing_temp_dir, f"{base_name}_skin.fbx") abs_final_rigged_glb_path = os.path.join(processing_temp_dir, f"{base_name}_rigged_final.glb") # Step 1: Skeleton Prediction using generate_skeleton.sh print("Step 1: Predicting Skeleton...") skeleton_cmd = [ "bash", "launch/inference/generate_skeleton.sh", "--input", input_glb_path, # Input is the original GLB "--output", abs_skeleton_output_path ] run_unirig_command(skeleton_cmd, "Skeleton Prediction") if not os.path.exists(abs_skeleton_output_path): raise gr.Error("Skeleton prediction failed to produce an output file. Check logs for UniRig errors.") # Step 2: Skinning Weight Prediction using generate_skin.sh print("Step 2: Predicting Skinning Weights...") # generate_skin.sh requires the skeleton from step 1 as --input, # and the original mesh as --source. skin_cmd = [ "bash", "launch/inference/generate_skin.sh", "--input", abs_skeleton_output_path, # Input is the skeleton FBX from previous step "--source", input_glb_path, # Source is the original GLB mesh "--output", abs_skin_output_path ] run_unirig_command(skin_cmd, "Skinning Prediction") if not os.path.exists(abs_skin_output_path): raise gr.Error("Skinning prediction failed to produce an output file. Check logs for UniRig errors.") # Step 3: Merge Skeleton/Skin with Original Mesh using merge.sh print("Step 3: Merging Results...") # merge.sh requires the skinned FBX as --source (which contains skeleton and weights) # and the original GLB as --target. merge_cmd = [ "bash", "launch/inference/merge.sh", "--source", abs_skin_output_path, # Source is the skinned FBX from previous step "--target", input_glb_path, # Target is the original GLB mesh "--output", abs_final_rigged_glb_path ] run_unirig_command(merge_cmd, "Merging") if not os.path.exists(abs_final_rigged_glb_path): raise gr.Error("Merging process failed to produce the final rigged GLB file. Check logs for UniRig errors.") return abs_final_rigged_glb_path except gr.Error: if os.path.exists(processing_temp_dir): shutil.rmtree(processing_temp_dir) print(f"Cleaned up temporary directory: {processing_temp_dir}") raise except Exception as e: print(f"An unexpected error occurred in rig_glb_mesh_multistep: {e}") if os.path.exists(processing_temp_dir): shutil.rmtree(processing_temp_dir) print(f"Cleaned up temporary directory: {processing_temp_dir}") raise gr.Error(f"An unexpected error occurred during processing: {str(e)[:500]}") # --- Gradio Interface --- theme = gr.themes.Soft( primary_hue=gr.themes.colors.sky, secondary_hue=gr.themes.colors.blue, neutral_hue=gr.themes.colors.slate, font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], ) if not os.path.isdir(UNIRIG_REPO_DIR) and __name__ == "__main__": print(f"CRITICAL STARTUP ERROR: UniRig repository not found at {UNIRIG_REPO_DIR}. The application will not work.") iface = gr.Interface( fn=rig_glb_mesh_multistep, inputs=gr.File( label="Upload .glb Mesh File", type="filepath" ), outputs=gr.Model3D( label="Rigged 3D Model (.glb)", clear_color=[0.8, 0.8, 0.8, 1.0], ), title="UniRig Auto-Rigger (Python 3.11 / PyTorch 2.3+)", description=( "Upload a 3D mesh in `.glb` format. This application uses the latest UniRig to automatically rig the mesh by calling its provided bash scripts.\n" "The process involves: 1. Skeleton Prediction, 2. Skinning Weight Prediction, 3. Merging.\n" "This may take several minutes. Ensure your GLB has clean geometry.\n" f"Running on: {str(DEVICE).upper()}. UniRig repo expected at: '{os.path.basename(UNIRIG_REPO_DIR)}'.\n" f"UniRig Source: https://github.com/VAST-AI-Research/UniRig" ), cache_examples=False, theme=theme ) if __name__ == "__main__": if not os.path.isdir(UNIRIG_REPO_DIR): print(f"CRITICAL: UniRig repository not found at {UNIRIG_REPO_DIR}. Ensure it's cloned in the Space's root.") iface.launch()