Spaces:
Running
Running
File size: 18,076 Bytes
11d9dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
"""
Analytics and usage tracking system for the RAG application.
"""
import time
import json
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from collections import defaultdict, deque
from datetime import datetime, timedelta
import threading
from dataclasses import dataclass, asdict
@dataclass
class QueryEvent:
"""Represents a query event for analytics."""
timestamp: float
query: str
query_length: int
search_mode: str
results_count: int
search_time: float
user_session: str = None
metadata_filters: Dict[str, Any] = None
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
@dataclass
class DocumentEvent:
"""Represents a document processing event."""
timestamp: float
filename: str
file_size: int
file_type: str
processing_time: float
chunk_count: int
success: bool
error_message: str = None
user_session: str = None
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
class AnalyticsManager:
"""Manages analytics and usage tracking for the RAG system."""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.analytics_enabled = config.get("ui", {}).get("show_analytics", True)
self.max_events = 10000 # Maximum events to keep in memory
self.save_interval = 300 # Save to disk every 5 minutes
# Event storage
self.query_events: deque = deque(maxlen=self.max_events)
self.document_events: deque = deque(maxlen=self.max_events)
self.system_events: deque = deque(maxlen=self.max_events)
# Session tracking
self.active_sessions: Dict[str, Dict[str, Any]] = {}
self.session_timeout = 3600 # 1 hour
# Aggregated statistics
self.stats = {
"total_queries": 0,
"total_documents_processed": 0,
"total_search_time": 0,
"total_processing_time": 0,
"avg_query_length": 0,
"avg_results_per_query": 0,
"popular_search_modes": defaultdict(int),
"file_type_distribution": defaultdict(int),
"error_count": 0,
"uptime_start": time.time()
}
# Thread safety
self._lock = threading.RLock()
# Auto-save setup
self.cache_dir = Path(config.get("cache", {}).get("cache_dir", "./cache"))
self.analytics_file = self.cache_dir / "analytics.json"
if self.analytics_enabled:
self._load_persistent_data()
self._start_auto_save()
def track_query(
self,
query: str,
search_mode: str,
results_count: int,
search_time: float,
user_session: str = None,
metadata_filters: Dict[str, Any] = None
) -> None:
"""Track a search query event."""
if not self.analytics_enabled:
return
with self._lock:
event = QueryEvent(
timestamp=time.time(),
query=query,
query_length=len(query),
search_mode=search_mode,
results_count=results_count,
search_time=search_time,
user_session=user_session or "anonymous",
metadata_filters=metadata_filters
)
self.query_events.append(event)
# Update aggregated stats
self.stats["total_queries"] += 1
self.stats["total_search_time"] += search_time
self.stats["popular_search_modes"][search_mode] += 1
# Update averages
total_queries = self.stats["total_queries"]
self.stats["avg_query_length"] = (
(self.stats["avg_query_length"] * (total_queries - 1) + len(query)) / total_queries
)
self.stats["avg_results_per_query"] = (
(self.stats["avg_results_per_query"] * (total_queries - 1) + results_count) / total_queries
)
# Update session
self._update_session(user_session or "anonymous", "query")
def track_document_processing(
self,
filename: str,
file_size: int,
file_type: str,
processing_time: float,
chunk_count: int,
success: bool,
error_message: str = None,
user_session: str = None
) -> None:
"""Track a document processing event."""
if not self.analytics_enabled:
return
with self._lock:
event = DocumentEvent(
timestamp=time.time(),
filename=filename,
file_size=file_size,
file_type=file_type,
processing_time=processing_time,
chunk_count=chunk_count,
success=success,
error_message=error_message,
user_session=user_session or "anonymous"
)
self.document_events.append(event)
# Update aggregated stats
if success:
self.stats["total_documents_processed"] += 1
self.stats["total_processing_time"] += processing_time
self.stats["file_type_distribution"][file_type] += 1
else:
self.stats["error_count"] += 1
# Update session
self._update_session(user_session or "anonymous", "document_upload")
def track_system_event(self, event_type: str, details: Dict[str, Any]) -> None:
"""Track a system event."""
if not self.analytics_enabled:
return
with self._lock:
event = {
"timestamp": time.time(),
"event_type": event_type,
"details": details
}
self.system_events.append(event)
def _update_session(self, session_id: str, action_type: str) -> None:
"""Update session information."""
current_time = time.time()
if session_id not in self.active_sessions:
self.active_sessions[session_id] = {
"start_time": current_time,
"last_activity": current_time,
"action_count": 0,
"actions": defaultdict(int)
}
session = self.active_sessions[session_id]
session["last_activity"] = current_time
session["action_count"] += 1
session["actions"][action_type] += 1
def get_query_analytics(self, hours: int = 24) -> Dict[str, Any]:
"""Get query analytics for the specified time period."""
if not self.analytics_enabled:
return {}
cutoff_time = time.time() - (hours * 3600)
with self._lock:
# Filter events by time
recent_queries = [
event for event in self.query_events
if event.timestamp >= cutoff_time
]
if not recent_queries:
return {
"total_queries": 0,
"avg_search_time": 0,
"avg_query_length": 0,
"search_modes": {},
"queries_per_hour": [],
"popular_terms": []
}
# Calculate metrics
total_queries = len(recent_queries)
total_search_time = sum(q.search_time for q in recent_queries)
total_query_length = sum(q.query_length for q in recent_queries)
search_modes = defaultdict(int)
for query in recent_queries:
search_modes[query.search_mode] += 1
# Query distribution over time
hour_buckets = defaultdict(int)
for query in recent_queries:
hour = int((query.timestamp - cutoff_time) // 3600)
hour_buckets[hour] += 1
queries_per_hour = [hour_buckets[i] for i in range(hours)]
# Extract popular terms (simple word frequency)
all_terms = []
for query in recent_queries:
terms = query.query.lower().split()
all_terms.extend([term.strip('.,!?') for term in terms if len(term) > 2])
term_counts = defaultdict(int)
for term in all_terms:
term_counts[term] += 1
popular_terms = sorted(term_counts.items(), key=lambda x: x[1], reverse=True)[:10]
return {
"total_queries": total_queries,
"avg_search_time": total_search_time / total_queries if total_queries > 0 else 0,
"avg_query_length": total_query_length / total_queries if total_queries > 0 else 0,
"search_modes": dict(search_modes),
"queries_per_hour": queries_per_hour,
"popular_terms": popular_terms
}
def get_document_analytics(self, hours: int = 24) -> Dict[str, Any]:
"""Get document processing analytics."""
if not self.analytics_enabled:
return {}
cutoff_time = time.time() - (hours * 3600)
with self._lock:
recent_docs = [
event for event in self.document_events
if event.timestamp >= cutoff_time
]
if not recent_docs:
return {
"total_documents": 0,
"successful_uploads": 0,
"failed_uploads": 0,
"avg_processing_time": 0,
"file_types": {},
"total_chunks_created": 0
}
successful_docs = [doc for doc in recent_docs if doc.success]
failed_docs = [doc for doc in recent_docs if not doc.success]
file_types = defaultdict(int)
total_processing_time = 0
total_chunks = 0
for doc in successful_docs:
file_types[doc.file_type] += 1
total_processing_time += doc.processing_time
total_chunks += doc.chunk_count
return {
"total_documents": len(recent_docs),
"successful_uploads": len(successful_docs),
"failed_uploads": len(failed_docs),
"avg_processing_time": (
total_processing_time / len(successful_docs)
if successful_docs else 0
),
"file_types": dict(file_types),
"total_chunks_created": total_chunks
}
def get_system_analytics(self) -> Dict[str, Any]:
"""Get system-wide analytics."""
with self._lock:
uptime = time.time() - self.stats["uptime_start"]
# Clean up expired sessions
self._cleanup_expired_sessions()
return {
"uptime_seconds": uptime,
"uptime_hours": uptime / 3600,
"active_sessions": len(self.active_sessions),
"total_queries": self.stats["total_queries"],
"total_documents_processed": self.stats["total_documents_processed"],
"error_count": self.stats["error_count"],
"avg_query_length": self.stats["avg_query_length"],
"avg_results_per_query": self.stats["avg_results_per_query"],
"popular_search_modes": dict(self.stats["popular_search_modes"]),
"file_type_distribution": dict(self.stats["file_type_distribution"]),
"queries_per_hour": (
self.stats["total_queries"] / (uptime / 3600)
if uptime > 0 else 0
),
"documents_per_hour": (
self.stats["total_documents_processed"] / (uptime / 3600)
if uptime > 0 else 0
)
}
def _cleanup_expired_sessions(self) -> None:
"""Remove expired sessions."""
current_time = time.time()
expired_sessions = [
session_id for session_id, session in self.active_sessions.items()
if current_time - session["last_activity"] > self.session_timeout
]
for session_id in expired_sessions:
del self.active_sessions[session_id]
def get_dashboard_data(self) -> Dict[str, Any]:
"""Get comprehensive dashboard data."""
return {
"system": self.get_system_analytics(),
"queries_24h": self.get_query_analytics(24),
"documents_24h": self.get_document_analytics(24),
"queries_1h": self.get_query_analytics(1),
"last_updated": time.time()
}
def export_data(self, filepath: Optional[str] = None, hours: int = None) -> str:
"""Export analytics data to JSON file."""
if filepath is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filepath = str(self.cache_dir / f"analytics_export_{timestamp}.json")
cutoff_time = time.time() - (hours * 3600) if hours else 0
with self._lock:
# Filter events if time limit specified
if hours:
query_events = [
event.to_dict() for event in self.query_events
if event.timestamp >= cutoff_time
]
document_events = [
event.to_dict() for event in self.document_events
if event.timestamp >= cutoff_time
]
else:
query_events = [event.to_dict() for event in self.query_events]
document_events = [event.to_dict() for event in self.document_events]
export_data = {
"export_timestamp": time.time(),
"system_stats": self.get_system_analytics(),
"query_events": query_events,
"document_events": document_events,
"active_sessions": dict(self.active_sessions)
}
# Save to file
self.cache_dir.mkdir(parents=True, exist_ok=True)
with open(filepath, 'w') as f:
json.dump(export_data, f, indent=2, default=str)
return filepath
def _save_persistent_data(self) -> None:
"""Save analytics data to persistent storage."""
if not self.analytics_enabled:
return
try:
self.cache_dir.mkdir(parents=True, exist_ok=True)
with self._lock:
data = {
"stats": dict(self.stats),
"query_events": [event.to_dict() for event in list(self.query_events)[-1000:]], # Last 1000
"document_events": [event.to_dict() for event in list(self.document_events)[-1000:]],
"last_save": time.time()
}
with open(self.analytics_file, 'w') as f:
json.dump(data, f, indent=2, default=str)
except Exception as e:
print(f"Failed to save analytics data: {e}")
def _load_persistent_data(self) -> None:
"""Load analytics data from persistent storage."""
if not self.analytics_file.exists():
return
try:
with open(self.analytics_file, 'r') as f:
data = json.load(f)
# Restore stats
if "stats" in data:
for key, value in data["stats"].items():
if key in self.stats:
if isinstance(value, dict):
self.stats[key] = defaultdict(int, value)
else:
self.stats[key] = value
print(f"Loaded analytics data from {self.analytics_file}")
except Exception as e:
print(f"Failed to load analytics data: {e}")
def _start_auto_save(self) -> None:
"""Start automatic saving of analytics data."""
def save_periodically():
while True:
time.sleep(self.save_interval)
self._save_persistent_data()
save_thread = threading.Thread(target=save_periodically, daemon=True)
save_thread.start()
def clear_data(self, confirm: bool = False) -> None:
"""Clear all analytics data."""
if not confirm:
return
with self._lock:
self.query_events.clear()
self.document_events.clear()
self.system_events.clear()
self.active_sessions.clear()
# Reset stats
self.stats = {
"total_queries": 0,
"total_documents_processed": 0,
"total_search_time": 0,
"total_processing_time": 0,
"avg_query_length": 0,
"avg_results_per_query": 0,
"popular_search_modes": defaultdict(int),
"file_type_distribution": defaultdict(int),
"error_count": 0,
"uptime_start": time.time()
}
# Remove persistent file
if self.analytics_file.exists():
self.analytics_file.unlink()
print("Analytics data cleared")
def shutdown(self) -> None:
"""Shutdown analytics manager and save data."""
if self.analytics_enabled:
self._save_persistent_data()
print("Analytics data saved on shutdown") |