Spaces:
Running
Running
File size: 15,145 Bytes
11d9dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
"""
Document processing module for parsing and chunking various document formats.
"""
import re
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Any
import hashlib
import mimetypes
# Document parsing imports
import PyPDF2
from docx import Document as DocxDocument
from io import BytesIO
from .error_handler import DocumentProcessingError, validate_file_upload
class DocumentChunk:
"""Represents a chunk of processed document content."""
def __init__(
self,
content: str,
metadata: Dict[str, Any],
chunk_id: str = None
):
self.content = content.strip()
self.metadata = metadata
self.chunk_id = chunk_id or self._generate_chunk_id()
def _generate_chunk_id(self) -> str:
"""Generate unique chunk ID based on content hash."""
content_hash = hashlib.md5(self.content.encode()).hexdigest()[:8]
source = self.metadata.get("source", "unknown")
page = self.metadata.get("page", 0)
return f"{Path(source).stem}_{page}_{content_hash}"
def to_dict(self) -> Dict[str, Any]:
"""Convert chunk to dictionary representation."""
return {
"chunk_id": self.chunk_id,
"content": self.content,
"metadata": self.metadata
}
class DocumentProcessor:
"""Main document processing class supporting multiple formats."""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.processing_config = config.get("processing", {})
self.chunk_size = self.processing_config.get("chunk_size", 512)
self.chunk_overlap = self.processing_config.get("chunk_overlap", 50)
self.min_chunk_size = self.processing_config.get("min_chunk_size", 100)
self.max_chunks_per_doc = self.processing_config.get("max_chunks_per_doc", 1000)
self.supported_formats = self.processing_config.get("supported_formats", ["pdf", "docx", "txt"])
def process_document(
self,
file_path: str,
filename: Optional[str] = None
) -> List[DocumentChunk]:
"""
Process a document and return list of chunks.
Args:
file_path: Path to the document file
filename: Optional original filename
Returns:
List of DocumentChunk objects
"""
# Validate file
max_size = self.config.get("app", {}).get("max_upload_size", 50) * 1024 * 1024
allowed_extensions = [f".{fmt}" for fmt in self.supported_formats]
validate_file_upload(file_path, max_size, allowed_extensions)
file_path = Path(file_path)
filename = filename or file_path.name
# Detect file type and extract text
try:
text_content, metadata = self._extract_text(file_path, filename)
if not text_content.strip():
raise DocumentProcessingError("Document appears to be empty or contains no extractable text")
# Create chunks
chunks = self._create_chunks(text_content, metadata)
if not chunks:
raise DocumentProcessingError("Failed to create any valid chunks from document")
if len(chunks) > self.max_chunks_per_doc:
raise DocumentProcessingError(
f"Document too large. Generated {len(chunks)} chunks, "
f"maximum allowed is {self.max_chunks_per_doc}"
)
return chunks
except Exception as e:
if isinstance(e, DocumentProcessingError):
raise
else:
raise DocumentProcessingError(f"Failed to process document: {str(e)}") from e
def _extract_text(self, file_path: Path, filename: str) -> Tuple[str, Dict[str, Any]]:
"""Extract text from document based on file type."""
file_extension = file_path.suffix.lower()
# Base metadata
metadata = {
"source": str(file_path),
"filename": filename,
"file_type": file_extension,
"file_size": file_path.stat().st_size
}
if file_extension == ".pdf":
text, pdf_metadata = self._extract_pdf_text(file_path)
metadata.update(pdf_metadata)
elif file_extension == ".docx":
text, docx_metadata = self._extract_docx_text(file_path)
metadata.update(docx_metadata)
elif file_extension == ".txt":
text, txt_metadata = self._extract_txt_text(file_path)
metadata.update(txt_metadata)
else:
raise DocumentProcessingError(f"Unsupported file format: {file_extension}")
return text, metadata
def _extract_pdf_text(self, file_path: Path) -> Tuple[str, Dict[str, Any]]:
"""Extract text from PDF file."""
try:
with open(file_path, "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
if len(pdf_reader.pages) == 0:
raise DocumentProcessingError("PDF file contains no pages")
text_parts = []
for page_num, page in enumerate(pdf_reader.pages):
try:
page_text = page.extract_text()
if page_text.strip():
text_parts.append(f"\n\n--- Page {page_num + 1} ---\n\n{page_text}")
except Exception as e:
# Log warning but continue with other pages
print(f"Warning: Could not extract text from page {page_num + 1}: {e}")
if not text_parts:
raise DocumentProcessingError("Could not extract any text from PDF")
# Extract metadata
pdf_metadata = {
"page_count": len(pdf_reader.pages),
"pdf_metadata": {}
}
if pdf_reader.metadata:
pdf_metadata["pdf_metadata"] = {
"title": pdf_reader.metadata.get("/Title", ""),
"author": pdf_reader.metadata.get("/Author", ""),
"subject": pdf_reader.metadata.get("/Subject", ""),
"creator": pdf_reader.metadata.get("/Creator", "")
}
return "\n".join(text_parts), pdf_metadata
except Exception as e:
if isinstance(e, DocumentProcessingError):
raise
else:
raise DocumentProcessingError(f"Failed to read PDF file: {str(e)}") from e
def _extract_docx_text(self, file_path: Path) -> Tuple[str, Dict[str, Any]]:
"""Extract text from DOCX file."""
try:
doc = DocxDocument(file_path)
# Extract paragraphs
paragraphs = []
for paragraph in doc.paragraphs:
text = paragraph.text.strip()
if text:
paragraphs.append(text)
# Extract tables
table_texts = []
for table in doc.tables:
table_data = []
for row in table.rows:
row_data = [cell.text.strip() for cell in row.cells if cell.text.strip()]
if row_data:
table_data.append(" | ".join(row_data))
if table_data:
table_texts.append("Table:\n" + "\n".join(table_data))
all_text = "\n\n".join(paragraphs + table_texts)
if not all_text.strip():
raise DocumentProcessingError("DOCX file contains no extractable text")
# Metadata
docx_metadata = {
"paragraph_count": len(paragraphs),
"table_count": len(table_texts)
}
# Core properties
if hasattr(doc, "core_properties"):
props = doc.core_properties
docx_metadata["docx_metadata"] = {
"title": props.title or "",
"author": props.author or "",
"subject": props.subject or "",
"created": str(props.created) if props.created else ""
}
return all_text, docx_metadata
except Exception as e:
if isinstance(e, DocumentProcessingError):
raise
else:
raise DocumentProcessingError(f"Failed to read DOCX file: {str(e)}") from e
def _extract_txt_text(self, file_path: Path) -> Tuple[str, Dict[str, Any]]:
"""Extract text from TXT file."""
try:
# Try different encodings
encodings = ["utf-8", "utf-8-sig", "latin1", "cp1252"]
text = None
encoding_used = None
for encoding in encodings:
try:
with open(file_path, "r", encoding=encoding) as file:
text = file.read()
encoding_used = encoding
break
except UnicodeDecodeError:
continue
if text is None:
raise DocumentProcessingError("Could not decode text file with any supported encoding")
if not text.strip():
raise DocumentProcessingError("Text file is empty")
# Basic text statistics
lines = text.split("\n")
txt_metadata = {
"encoding": encoding_used,
"line_count": len(lines),
"char_count": len(text)
}
return text, txt_metadata
except Exception as e:
if isinstance(e, DocumentProcessingError):
raise
else:
raise DocumentProcessingError(f"Failed to read text file: {str(e)}") from e
def _create_chunks(self, text: str, base_metadata: Dict[str, Any]) -> List[DocumentChunk]:
"""Create overlapping chunks from text."""
# Clean and normalize text
text = self._clean_text(text)
# Split into sentences for better chunk boundaries
sentences = self._split_into_sentences(text)
if not sentences:
return []
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
sentence_length = len(sentence)
# If adding this sentence would exceed chunk size
if current_length + sentence_length > self.chunk_size and current_chunk:
# Create chunk from current sentences
chunk_text = " ".join(current_chunk)
if len(chunk_text) >= self.min_chunk_size:
chunk_metadata = {
**base_metadata,
"chunk_index": len(chunks),
"char_count": len(chunk_text),
"sentence_count": len(current_chunk)
}
chunks.append(DocumentChunk(chunk_text, chunk_metadata))
# Start new chunk with overlap
if self.chunk_overlap > 0:
overlap_sentences = self._get_overlap_sentences(current_chunk)
current_chunk = overlap_sentences
current_length = sum(len(s) for s in overlap_sentences)
else:
current_chunk = []
current_length = 0
# Add current sentence
current_chunk.append(sentence)
current_length += sentence_length
# Create final chunk
if current_chunk:
chunk_text = " ".join(current_chunk)
if len(chunk_text) >= self.min_chunk_size:
chunk_metadata = {
**base_metadata,
"chunk_index": len(chunks),
"char_count": len(chunk_text),
"sentence_count": len(current_chunk)
}
chunks.append(DocumentChunk(chunk_text, chunk_metadata))
return chunks
def _clean_text(self, text: str) -> str:
"""Clean and normalize text."""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text)
# Remove page markers (from PDF extraction)
text = re.sub(r'\n--- Page \d+ ---\n', '\n', text)
# Fix common OCR errors and formatting issues
text = re.sub(r'([a-z])([A-Z])', r'\1 \2', text) # Add space between camelCase
text = re.sub(r'([.!?])([A-Z])', r'\1 \2', text) # Add space after punctuation
return text.strip()
def _split_into_sentences(self, text: str) -> List[str]:
"""Split text into sentences using simple heuristics."""
# Simple sentence splitting - can be enhanced with NLTK if needed
sentences = re.split(r'[.!?]+', text)
# Clean up sentences
cleaned_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) >= 10: # Minimum sentence length
cleaned_sentences.append(sentence)
return cleaned_sentences
def _get_overlap_sentences(self, sentences: List[str]) -> List[str]:
"""Get sentences for overlap based on character count."""
overlap_sentences = []
overlap_length = 0
# Take sentences from the end up to the overlap size
for sentence in reversed(sentences):
if overlap_length + len(sentence) <= self.chunk_overlap:
overlap_sentences.insert(0, sentence)
overlap_length += len(sentence)
else:
break
return overlap_sentences
def get_document_stats(self, chunks: List[DocumentChunk]) -> Dict[str, Any]:
"""Get statistics about processed document."""
if not chunks:
return {"chunk_count": 0, "total_chars": 0, "avg_chunk_size": 0}
total_chars = sum(len(chunk.content) for chunk in chunks)
return {
"chunk_count": len(chunks),
"total_chars": total_chars,
"avg_chunk_size": total_chars / len(chunks),
"min_chunk_size": min(len(chunk.content) for chunk in chunks),
"max_chunk_size": max(len(chunk.content) for chunk in chunks),
"source_file": chunks[0].metadata.get("filename", "unknown"),
"file_type": chunks[0].metadata.get("file_type", "unknown")
} |