Spaces:
Running
Running
File size: 47,553 Bytes
11d9dfb 5e2e4e3 11d9dfb 50c07a8 11d9dfb 50c07a8 5e2e4e3 50c07a8 11d9dfb 5e2e4e3 11d9dfb 50c07a8 11d9dfb 9fb62ac 11d9dfb 9fb62ac 11d9dfb 9fb62ac 11d9dfb 5e2e4e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 |
"""
Main RAG system orchestrator that coordinates all components.
"""
import os
import time
import yaml
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import threading
from dataclasses import dataclass, asdict
from .error_handler import (
ErrorHandler, RAGError, DocumentProcessingError,
SearchError, ConfigurationError, validate_config,
create_success_response, create_error_response
)
from .document_processor import DocumentProcessor, DocumentChunk
from .embedding_manager import EmbeddingManager
from .vector_store import VectorStore
from .search_engine import HybridSearchEngine, SearchResult
from .reranker import RerankingPipeline
from .cache_manager import CacheManager
from .analytics import AnalyticsManager
@dataclass
class RAGSystemStatus:
"""Represents the current status of the RAG system."""
initialized: bool = False
ready: bool = False
models_loaded: bool = False
documents_indexed: int = 0
total_chunks: int = 0
last_updated: Optional[float] = None
error_message: Optional[str] = None
class RAGSystem:
"""Main RAG system that orchestrates all components."""
def __init__(self, config_path: Optional[str] = None, config_dict: Optional[Dict[str, Any]] = None):
"""
Initialize the RAG system.
Args:
config_path: Path to YAML configuration file
config_dict: Dictionary configuration (overrides config_path)
"""
# Initialize basic logging first
self.logger = None
try:
# Load configuration
if config_dict:
self.config = config_dict
elif config_path:
self.config = self._load_config(config_path)
else:
# Try default config paths
for default_path in ["config.yaml", "config-local.yaml"]:
if Path(default_path).exists():
self.config = self._load_config(default_path)
break
else:
# Use default configuration if no config file found
self.config = self._get_default_config()
# Validate configuration
validate_config(self.config)
# Initialize error handling
self.error_handler = ErrorHandler(self.config)
self.logger = self.error_handler.logger
# Log successful configuration loading
self.logger.info("Configuration loaded and validated successfully")
except Exception as e:
# If config loading fails, use basic logging
import logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
self.logger.error(f"Failed to load configuration: {e}")
# Use default config
self.config = self._get_default_config()
self.error_handler = ErrorHandler(self.config)
self.logger = self.error_handler.logger
# Initialize components
self.cache_manager = CacheManager(self.config)
self.document_processor = DocumentProcessor(self.config)
self.embedding_manager = EmbeddingManager(self.config, self.cache_manager)
self.vector_store = VectorStore(self.config)
self.search_engine = HybridSearchEngine(self.config, self.vector_store)
self.reranking_pipeline = RerankingPipeline(self.config)
self.analytics_manager = AnalyticsManager(self.config)
# System state
self.status = RAGSystemStatus()
self._lock = threading.RLock()
self._document_index: Dict[str, List[str]] = {} # filename -> chunk_ids
# Connect components
self.search_engine.set_embedding_manager(self.embedding_manager)
self.logger.info("RAG system initialized successfully")
self.status.initialized = True
def _load_config(self, config_path: str) -> Dict[str, Any]:
"""Load configuration from YAML file."""
config_path = Path(config_path)
if not config_path.exists():
raise ConfigurationError(f"Configuration file not found: {config_path}")
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
# Note: logger not available yet during config loading
return config
except yaml.YAMLError as e:
raise ConfigurationError(f"Failed to parse YAML configuration: {str(e)}") from e
except Exception as e:
raise ConfigurationError(f"Failed to load configuration: {str(e)}") from e
def _get_default_config(self) -> Dict[str, Any]:
"""Get default configuration when no config file is found."""
return {
"app": {
"name": "Professional RAG Document Assistant",
"version": "1.0.0",
"debug": False,
"max_upload_size": 50,
"max_concurrent_uploads": 3
},
"models": {
"embedding": {
"name": "sentence-transformers/all-MiniLM-L6-v2",
"max_seq_length": 256,
"batch_size": 32,
"device": "auto"
},
"reranker": {
"name": "cross-encoder/ms-marco-MiniLM-L-6-v2",
"max_seq_length": 512,
"batch_size": 16,
"enabled": True
}
},
"processing": {
"chunk_size": 512,
"chunk_overlap": 50,
"min_chunk_size": 100,
"max_chunks_per_doc": 1000,
"supported_formats": ["pdf", "docx", "txt"]
},
"search": {
"default_k": 10,
"max_k": 20,
"vector_weight": 0.7,
"bm25_weight": 0.3,
"rerank_top_k": 50,
"final_top_k": 10
},
"cache": {
"embedding_cache_size": 10000,
"query_cache_size": 1000,
"cache_ttl": 3600,
"enable_disk_cache": True,
"cache_dir": "./cache"
},
"ui": {
"theme": "soft",
"title": "Professional RAG Assistant",
"description": "Upload documents and ask questions with AI-powered retrieval",
"max_file_size": "50MB",
"allowed_extensions": [".pdf", ".docx", ".txt"],
"show_progress": True,
"show_analytics": True
},
"logging": {
"level": "INFO",
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
"file": "logs/rag_system.log",
"max_size": "10MB",
"backup_count": 5
}
}
@property
def is_ready(self) -> bool:
"""Check if system is ready for operations."""
return self.status.ready and self.status.initialized
def warmup(self) -> Dict[str, Any]:
"""Warm up the system by loading models and initializing components."""
try:
self.logger.info("Starting system warmup...")
start_time = time.time()
# Warm up embedding manager
self.embedding_manager.warmup()
# Warm up re-ranker if enabled
self.reranking_pipeline.warmup()
# Update status
self.status.models_loaded = True
self.status.ready = True
self.status.last_updated = time.time()
warmup_time = time.time() - start_time
self.logger.info(f"System warmup completed in {warmup_time:.2f}s")
return create_success_response({
"warmup_time": warmup_time,
"models_loaded": True,
"system_ready": True
})
except Exception as e:
error_msg = self.error_handler.log_error(e, {"operation": "warmup"})
self.status.error_message = error_msg
return create_error_response(RAGError(error_msg))
def add_document(
self,
file_path: str,
filename: Optional[str] = None,
user_session: str = None,
progress_callback: Optional[callable] = None
) -> Dict[str, Any]:
"""
Add a document to the RAG system.
Args:
file_path: Path to the document file
filename: Optional original filename
user_session: Optional user session ID
progress_callback: Optional callback for progress updates
Returns:
Response dictionary with operation results
"""
start_time = time.time()
processing_successful = False
chunk_count = 0
error_message = None
try:
with self._lock:
filename = filename or Path(file_path).name
if progress_callback:
progress_callback("Processing document...", 0.1)
# Process document
self.logger.info(f"Processing document: {filename}")
chunks = self.document_processor.process_document(file_path, filename)
chunk_count = len(chunks)
if progress_callback:
progress_callback("Generating embeddings...", 0.3)
# Generate embeddings
texts = [chunk.content for chunk in chunks]
embeddings = self.embedding_manager.generate_embeddings(texts)
if progress_callback:
progress_callback("Adding to vector store...", 0.7)
# Add to vector store
chunk_ids = self.vector_store.add_documents(chunks, embeddings)
if progress_callback:
progress_callback("Building search index...", 0.9)
# Update search index
all_chunks = []
for chunk_id in chunk_ids:
chunk_data = self.vector_store.get_by_id(chunk_id)
if chunk_data:
_, metadata = chunk_data
chunk = DocumentChunk(
content=metadata.get("content", ""),
metadata=metadata,
chunk_id=chunk_id
)
all_chunks.append(chunk)
# Rebuild BM25 index with all documents
all_stored_chunks = []
for stored_chunk_id in self.vector_store._id_to_index.keys():
stored_data = self.vector_store.get_by_id(stored_chunk_id)
if stored_data:
_, stored_metadata = stored_data
stored_chunk = DocumentChunk(
content=stored_metadata.get("content", ""),
metadata=stored_metadata,
chunk_id=stored_chunk_id
)
all_stored_chunks.append(stored_chunk)
self.search_engine.build_bm25_index(all_stored_chunks)
# Update document index
self._document_index[filename] = chunk_ids
# Update system status
self.status.documents_indexed = len(self._document_index)
self.status.total_chunks = len(self.vector_store._vectors)
self.status.last_updated = time.time()
processing_time = time.time() - start_time
processing_successful = True
if progress_callback:
progress_callback("Document processing completed!", 1.0)
# Get document stats
doc_stats = self.document_processor.get_document_stats(chunks)
# Create sample chunk data for logging
sample_chunks = []
for i, chunk in enumerate(chunks[:5]): # First 5 chunks as samples
sample_chunks.append({
"chunk_index": i,
"chunk_id": chunk.chunk_id,
"content": chunk.content,
"metadata": chunk.metadata,
"content_length": len(chunk.content)
})
self.logger.info(
f"Document processed successfully: {filename} "
f"({chunk_count} chunks, {processing_time:.2f}s)"
)
# Log sample chunks
self.logger.info(f"Sample chunks from {filename}:")
for i, chunk in enumerate(chunks[:3]): # Log first 3 chunks
chunk_preview = chunk.content[:150] + "..." if len(chunk.content) > 150 else chunk.content
self.logger.info(f" Chunk {i} (ID: {chunk.chunk_id}): {chunk_preview}")
if chunk.metadata.get('page'):
self.logger.info(f" - From page {chunk.metadata['page']}")
# Track analytics
file_stats = Path(file_path).stat()
self.analytics_manager.track_document_processing(
filename=filename,
file_size=file_stats.st_size,
file_type=Path(filename).suffix.lower(),
processing_time=processing_time,
chunk_count=chunk_count,
success=True,
user_session=user_session
)
return create_success_response({
"filename": filename,
"chunks_created": chunk_count,
"processing_time": processing_time,
"document_stats": doc_stats,
"total_documents": self.status.documents_indexed,
"total_chunks": self.status.total_chunks,
"sample_chunks": sample_chunks # Include sample chunks for detailed logging
})
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "add_document",
"filename": filename,
"file_path": file_path
})
processing_time = time.time() - start_time
# Track failed processing
try:
file_stats = Path(file_path).stat()
self.analytics_manager.track_document_processing(
filename=filename or "unknown",
file_size=file_stats.st_size,
file_type=Path(filename or file_path).suffix.lower(),
processing_time=processing_time,
chunk_count=0,
success=False,
error_message=str(e),
user_session=user_session
)
except Exception:
pass # Don't fail on analytics tracking
return create_error_response(RAGError(error_message))
def search(
self,
query: str,
k: int = None,
search_mode: str = "hybrid",
enable_reranking: bool = True,
metadata_filter: Optional[Dict[str, Any]] = None,
user_session: str = None
) -> Dict[str, Any]:
"""
Search the document collection.
Args:
query: Search query
k: Number of results to return
search_mode: Search mode ("vector", "bm25", "hybrid")
enable_reranking: Whether to apply re-ranking
metadata_filter: Optional metadata filter
user_session: Optional user session ID
Returns:
Response dictionary with search results
"""
start_time = time.time()
try:
if not self.is_ready:
raise SearchError("System not ready. Please run warmup first.")
if not query or not query.strip():
raise SearchError("Query cannot be empty")
query = query.strip()
k = k or self.config.get("search", {}).get("default_k", 10)
self.logger.info(f"Searching: '{query}' (mode: {search_mode}, k: {k})")
# Perform search
search_results = self.search_engine.search(
query=query,
k=k * 2, # Get more results for re-ranking
search_mode=search_mode,
metadata_filter=metadata_filter
)
# Apply re-ranking
final_results = self.reranking_pipeline.process(
query=query,
results=search_results,
apply_reranking=enable_reranking
)
# Limit to requested number of results
final_results = final_results[:k]
search_time = time.time() - start_time
# Convert results to serializable format
results_data = [result.to_dict() for result in final_results]
# Get query suggestions if results are available
suggestions = []
if final_results:
suggestions = self.search_engine.suggest_query_expansion(query, final_results[:3])
self.logger.info(f"Search completed: {len(final_results)} results in {search_time:.2f}s")
# Track analytics
self.analytics_manager.track_query(
query=query,
search_mode=search_mode,
results_count=len(final_results),
search_time=search_time,
user_session=user_session,
metadata_filters=metadata_filter
)
return create_success_response({
"query": query,
"results": results_data,
"total_results": len(final_results),
"search_time": search_time,
"search_mode": search_mode,
"reranking_applied": enable_reranking,
"query_suggestions": suggestions
})
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "search",
"query": query,
"search_mode": search_mode,
"k": k
})
return create_error_response(RAGError(error_message))
def get_document_list(self) -> Dict[str, Any]:
"""Get list of indexed documents."""
try:
with self._lock:
documents = []
for filename, chunk_ids in self._document_index.items():
if chunk_ids:
# Get metadata from first chunk
first_chunk_data = self.vector_store.get_by_id(chunk_ids[0])
if first_chunk_data:
_, metadata = first_chunk_data
documents.append({
"filename": filename,
"chunk_count": len(chunk_ids),
"file_type": metadata.get("file_type", "unknown"),
"file_size": metadata.get("file_size", 0),
"source": metadata.get("source", ""),
"indexed_at": metadata.get("timestamp")
})
return create_success_response({
"documents": documents,
"total_documents": len(documents),
"total_chunks": self.status.total_chunks
})
except Exception as e:
error_message = self.error_handler.log_error(e, {"operation": "get_document_list"})
return create_error_response(RAGError(error_message))
def remove_document(self, filename: str) -> Dict[str, Any]:
"""Remove a document from the index."""
try:
with self._lock:
if filename not in self._document_index:
raise DocumentProcessingError(f"Document not found: {filename}")
chunk_ids = self._document_index[filename]
# Remove chunks from vector store
removed_count = 0
for chunk_id in chunk_ids:
if self.vector_store.delete_by_id(chunk_id):
removed_count += 1
# Remove from document index
del self._document_index[filename]
# Rebuild BM25 index
all_chunks = []
for remaining_chunk_id in self.vector_store._id_to_index.keys():
chunk_data = self.vector_store.get_by_id(remaining_chunk_id)
if chunk_data:
_, metadata = chunk_data
chunk = DocumentChunk(
content=metadata.get("content", ""),
metadata=metadata,
chunk_id=remaining_chunk_id
)
all_chunks.append(chunk)
self.search_engine.build_bm25_index(all_chunks)
# Update status
self.status.documents_indexed = len(self._document_index)
self.status.total_chunks = len(self.vector_store._vectors)
self.status.last_updated = time.time()
self.logger.info(f"Document removed: {filename} ({removed_count} chunks)")
return create_success_response({
"filename": filename,
"chunks_removed": removed_count,
"total_documents": self.status.documents_indexed,
"total_chunks": self.status.total_chunks
})
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "remove_document",
"filename": filename
})
return create_error_response(RAGError(error_message))
def clear_all_documents(self) -> Dict[str, Any]:
"""Clear all documents from the index."""
try:
with self._lock:
# Clear vector store
self.vector_store.clear()
# Clear search index
self.search_engine.build_bm25_index([])
# Clear document index
total_docs = len(self._document_index)
self._document_index.clear()
# Update status
self.status.documents_indexed = 0
self.status.total_chunks = 0
self.status.last_updated = time.time()
self.logger.info(f"All documents cleared ({total_docs} documents)")
return create_success_response({
"documents_removed": total_docs,
"total_documents": 0,
"total_chunks": 0
})
except Exception as e:
error_message = self.error_handler.log_error(e, {"operation": "clear_all_documents"})
return create_error_response(RAGError(error_message))
def get_system_stats(self) -> Dict[str, Any]:
"""Get comprehensive system statistics."""
try:
stats = {
"status": {
"initialized": self.status.initialized,
"ready": self.status.ready,
"models_loaded": self.status.models_loaded,
"documents_indexed": self.status.documents_indexed,
"total_chunks": self.status.total_chunks,
"last_updated": self.status.last_updated,
"error_message": self.status.error_message
},
"embedding_manager": self.embedding_manager.get_stats(),
"vector_store": self.vector_store.get_stats(),
"search_engine": self.search_engine.get_stats(),
"reranking_pipeline": self.reranking_pipeline.get_stats(),
"cache_manager": self.cache_manager.get_stats(),
"analytics": self.analytics_manager.get_system_analytics()
}
return create_success_response(stats)
except Exception as e:
error_message = self.error_handler.log_error(e, {"operation": "get_system_stats"})
return create_error_response(RAGError(error_message))
def get_analytics_dashboard(self) -> Dict[str, Any]:
"""Get analytics dashboard data."""
try:
dashboard_data = self.analytics_manager.get_dashboard_data()
return create_success_response(dashboard_data)
except Exception as e:
error_message = self.error_handler.log_error(e, {"operation": "get_analytics_dashboard"})
return create_error_response(RAGError(error_message))
def optimize_system(self) -> Dict[str, Any]:
"""Optimize system performance."""
try:
self.logger.info("Starting system optimization...")
start_time = time.time()
optimization_results = {}
# Optimize cache
cache_optimization = self.cache_manager.optimize()
optimization_results["cache"] = cache_optimization
# Optimize vector store
vector_optimization = self.vector_store.optimize()
optimization_results["vector_store"] = vector_optimization
# Optimize search engine
search_optimization = self.search_engine.optimize_index()
optimization_results["search_engine"] = search_optimization
optimization_time = time.time() - start_time
self.logger.info(f"System optimization completed in {optimization_time:.2f}s")
return create_success_response({
"optimization_time": optimization_time,
"components_optimized": optimization_results
})
except Exception as e:
error_message = self.error_handler.log_error(e, {"operation": "optimize_system"})
return create_error_response(RAGError(error_message))
def save_state(self, filepath: Optional[str] = None) -> Dict[str, Any]:
"""Save system state to disk."""
try:
saved_files = []
# Save vector store
vector_store_path = self.vector_store.save_to_disk(filepath)
saved_files.append(vector_store_path)
# Export analytics
analytics_path = self.analytics_manager.export_data()
saved_files.append(analytics_path)
self.logger.info(f"System state saved to {len(saved_files)} files")
return create_success_response({
"saved_files": saved_files,
"total_files": len(saved_files)
})
except Exception as e:
error_message = self.error_handler.log_error(e, {"operation": "save_state"})
return create_error_response(RAGError(error_message))
def shutdown(self) -> None:
"""Shutdown the RAG system gracefully."""
try:
self.logger.info("Shutting down RAG system...")
# Save analytics data
self.analytics_manager.shutdown()
# Unload models to free memory
self.embedding_manager.unload_model()
self.reranking_pipeline.unload_models()
# Clear status
self.status.ready = False
self.status.models_loaded = False
self.logger.info("RAG system shutdown completed")
except Exception as e:
self.logger.error(f"Error during shutdown: {e}")
def __enter__(self):
"""Context manager entry."""
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit."""
self.shutdown()
@dataclass
class EnhancedRAGSystemStatus(RAGSystemStatus):
"""Extended status for enhanced RAG system with conversation capabilities."""
conversation_enabled: bool = False
active_sessions: int = 0
total_conversations: int = 0
conversation_messages: int = 0
class EnhancedRAGSystem(RAGSystem):
"""Enhanced RAG system with conversation capabilities."""
def __init__(self, config_path: Optional[str] = None, config_dict: Optional[Dict[str, Any]] = None):
"""
Initialize the enhanced RAG system with conversation capabilities.
Args:
config_path: Path to YAML configuration file
config_dict: Dictionary configuration (overrides config_path)
"""
# Initialize base RAG system first
super().__init__(config_path, config_dict)
# Initialize conversation components
self._initialize_conversation_components()
# Enhanced status
self.status = EnhancedRAGSystemStatus()
self.status.__dict__.update(super().status.__dict__) # Copy base status
self.logger.info("Enhanced RAG system with conversation capabilities initialized")
def _initialize_conversation_components(self):
"""Initialize conversation management components."""
try:
from .conversation import (
ConversationManager, IntentClassifier, ContextHandler,
ResponseFusion, ConversationMemoryStore
)
# Initialize conversation components
self.conversation_manager = ConversationManager(self.config)
self.intent_classifier = IntentClassifier(self.config, self.embedding_manager)
self.context_handler = ContextHandler(self.config, self.embedding_manager)
self.response_fusion = ResponseFusion(self.config)
self.memory_store = ConversationMemoryStore(self.config, self.cache_manager)
# Update status
self.status.conversation_enabled = True
self.logger.info("Conversation components initialized successfully")
except Exception as e:
self.logger.error(f"Failed to initialize conversation components: {e}")
self.status.conversation_enabled = False
# Don't fail the whole system - conversation is optional
def process_conversation(self, user_input: str, session_id: Optional[str] = None,
user_id: Optional[str] = None) -> Dict[str, Any]:
"""
Process a conversational input with intelligent routing.
Args:
user_input: User's input message
session_id: Optional session ID (creates new if not provided)
user_id: Optional user identifier
Returns:
Response dictionary with conversation result
"""
start_time = time.time()
try:
if not self.status.conversation_enabled:
# Fallback to regular search if conversation not available
return self.search(user_input)
# Create or get session
if not session_id:
session_id = self.conversation_manager.create_session(user_id)
# Get conversation context
conversation_context = self.conversation_manager.get_conversation_context(
session_id, user_input
)
if not conversation_context:
raise RAGError(f"Could not create conversation context for session {session_id}")
# Add user message to session
self.conversation_manager.add_message(session_id, "user", user_input)
# Process conversation state
conversation_state = self.context_handler.process_conversation_context(
conversation_context
)
# Enhance query with context
contextual_query = self.context_handler.enhance_query_with_context(
user_input, conversation_state, conversation_context.message_history
)
# Classify intent and determine route
route_decision = self.intent_classifier.route_query(
user_input, {
"message_history": conversation_context.message_history,
"session_context": conversation_context.session_context,
"last_rag_query": conversation_state.document_references
}
)
# Process based on route
rag_result = None
if route_decision.route in ["rag", "hybrid"]:
rag_result = self._perform_contextual_search(
contextual_query, route_decision, conversation_state
)
# Generate fused response
conversation_response = self.response_fusion.generate_response(
route_decision=route_decision,
conversation_state=conversation_state,
contextual_query=contextual_query,
rag_result=rag_result,
conversation_history=conversation_context.message_history
)
# Add assistant message to session
assistant_message = self.conversation_manager.add_message(
session_id, "assistant", conversation_response.content,
metadata=conversation_response.metadata,
sources=[asdict(source) for source in conversation_response.sources]
)
# Store conversation state and memory
self._update_conversation_memory(
session_id, conversation_state, conversation_response
)
processing_time = time.time() - start_time
# Update statistics
self.status.conversation_messages += 1
self.status.active_sessions = len(self.conversation_manager.sessions)
# Track analytics
self.analytics_manager.track_query(
query=user_input,
search_mode=route_decision.route,
results_count=len(conversation_response.sources),
search_time=processing_time,
user_session=session_id,
metadata_filters={"conversation": True, "intent": route_decision.intent.intent.value}
)
self.logger.info(
f"Conversation processed: {route_decision.route} route, "
f"{len(conversation_response.sources)} sources, {processing_time:.2f}s"
)
return create_success_response({
"session_id": session_id,
"response": conversation_response.content,
"response_type": conversation_response.response_type.value,
"confidence": conversation_response.confidence,
"sources": [asdict(source) for source in conversation_response.sources],
"suggestions": conversation_response.suggestions,
"processing_info": conversation_response.processing_info,
"processing_time": processing_time,
"route": route_decision.route,
"intent": route_decision.intent.intent.value,
"message_id": assistant_message.id if assistant_message else None
})
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "process_conversation",
"user_input": user_input,
"session_id": session_id
})
return create_error_response(RAGError(error_message))
def _perform_contextual_search(self, contextual_query, route_decision, conversation_state):
"""Perform search enhanced with conversation context."""
from .conversation.response_fusion import RAGResult
# Use enhanced query for search
search_query = contextual_query.enhanced_query
# Get processing hints
hints = route_decision.processing_hints
k = hints.get("max_results", self.config.get("search", {}).get("default_k", 10))
search_mode = "hybrid" if hints.get("search_type") == "comprehensive" else "hybrid"
# Perform search using existing method
search_response = self.search(
query=search_query,
k=k,
search_mode=search_mode,
enable_reranking=hints.get("rerank_results", True),
user_session=conversation_state.mentioned_entities
)
if search_response.get("success"):
data = search_response["data"]
# Convert to RAGResult format
rag_result = RAGResult(
query=search_query,
chunks=data["results"],
total_score=sum(result.get("score", 0) for result in data["results"]),
processing_time=data["search_time"],
search_type=search_mode,
metadata={
"original_query": contextual_query.original_query,
"context_elements": contextual_query.context_elements,
"reranking_applied": data.get("reranking_applied", False)
}
)
return rag_result
return None
def _update_conversation_memory(self, session_id: str, conversation_state, conversation_response):
"""Update conversation memory with current interaction."""
try:
# Store conversation state
self.memory_store.store_conversation_state(session_id, conversation_state)
# Update conversation memory with key information
entities = list(conversation_state.mentioned_entities)
topics = conversation_state.active_topics
doc_context = {
"last_sources": [asdict(source) for source in conversation_response.sources],
"response_type": conversation_response.response_type.value
}
# Get session for user preferences
session = self.conversation_manager.get_session(session_id)
user_preferences = session.user_preferences if session else {}
self.memory_store.store_conversation_memory(
session_id=session_id,
summary=f"Discussion involving {', '.join(topics[:3])}" if topics else "General conversation",
entities=entities[-10:], # Last 10 entities
topics=topics,
document_context=doc_context,
user_preferences=user_preferences
)
except Exception as e:
self.logger.warning(f"Failed to update conversation memory: {e}")
def get_conversation_history(self, session_id: str, limit: Optional[int] = None) -> Dict[str, Any]:
"""
Get conversation history for a session.
Args:
session_id: Session identifier
limit: Optional limit on number of messages
Returns:
Response dictionary with conversation history
"""
try:
if not self.status.conversation_enabled:
return create_error_response(RAGError("Conversation not enabled"))
messages = self.conversation_manager.get_message_history(session_id, limit)
# Convert messages to serializable format
message_data = []
for message in messages:
message_data.append({
"id": message.id,
"role": message.role,
"content": message.content,
"timestamp": message.timestamp,
"metadata": message.metadata,
"sources": message.sources
})
return create_success_response({
"session_id": session_id,
"messages": message_data,
"total_messages": len(messages)
})
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "get_conversation_history",
"session_id": session_id
})
return create_error_response(RAGError(error_message))
def clear_conversation_session(self, session_id: str) -> Dict[str, Any]:
"""
Clear a conversation session.
Args:
session_id: Session identifier
Returns:
Response dictionary with operation result
"""
try:
if not self.status.conversation_enabled:
return create_error_response(RAGError("Conversation not enabled"))
# End session
session_ended = self.conversation_manager.end_session(session_id)
# Clear memory
memory_cleared = self.memory_store.clear_session_memory(session_id)
if session_ended:
self.status.active_sessions = len(self.conversation_manager.sessions)
self.logger.info(f"Conversation session cleared: {session_id}")
return create_success_response({
"session_id": session_id,
"session_ended": session_ended,
"memory_cleared": memory_cleared
})
else:
return create_error_response(RAGError(f"Session not found: {session_id}"))
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "clear_conversation_session",
"session_id": session_id
})
return create_error_response(RAGError(error_message))
def get_conversation_stats(self) -> Dict[str, Any]:
"""Get conversation system statistics."""
try:
if not self.status.conversation_enabled:
return create_success_response({"conversation_enabled": False})
conversation_stats = {
"conversation_enabled": True,
"active_sessions": len(self.conversation_manager.sessions),
"total_messages": self.status.conversation_messages,
"conversation_manager": self.conversation_manager.get_stats(),
"intent_classifier": self.intent_classifier.get_stats(),
"context_handler": self.context_handler.get_stats(),
"response_fusion": self.response_fusion.get_stats(),
"memory_store": self.memory_store.get_memory_stats()
}
return create_success_response(conversation_stats)
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "get_conversation_stats"
})
return create_error_response(RAGError(error_message))
def get_enhanced_system_stats(self) -> Dict[str, Any]:
"""Get comprehensive system statistics including conversation metrics."""
try:
# Get base system stats
base_stats = super().get_system_stats()
if not base_stats.get("success"):
return base_stats
# Add conversation stats
if self.status.conversation_enabled:
conversation_stats = self.get_conversation_stats()
if conversation_stats.get("success"):
base_stats["data"]["conversation"] = conversation_stats["data"]
# Update enhanced status
base_stats["data"]["status"].update({
"conversation_enabled": self.status.conversation_enabled,
"active_sessions": self.status.active_sessions,
"total_conversations": self.status.total_conversations,
"conversation_messages": self.status.conversation_messages
})
return base_stats
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "get_enhanced_system_stats"
})
return create_error_response(RAGError(error_message))
def warmup(self) -> Dict[str, Any]:
"""Warm up the enhanced system including conversation components."""
try:
# Warm up base system first
base_warmup = super().warmup()
if not base_warmup.get("success"):
return base_warmup
# Warm up conversation components if enabled
if self.status.conversation_enabled:
self.logger.info("Warming up conversation components...")
# Test conversation components
test_session = self.conversation_manager.create_session("warmup_test")
self.conversation_manager.end_session(test_session)
self.logger.info("Conversation components warmed up successfully")
# Update response to include conversation status
base_warmup["data"]["conversation_enabled"] = True
return base_warmup
except Exception as e:
error_message = self.error_handler.log_error(e, {
"operation": "enhanced_warmup"
})
return create_error_response(RAGError(error_message)) |