Spaces:
Running
Running
File size: 16,211 Bytes
11d9dfb f7c2b86 11d9dfb f7c2b86 11d9dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
"""
Cross-encoder re-ranking module for improving search result relevance.
"""
import time
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from tqdm import tqdm
from .error_handler import EmbeddingError, ResourceError
from .search_engine import SearchResult
class CrossEncoderReranker:
"""Cross-encoder model for re-ranking search results."""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.reranker_config = config.get("models", {}).get("reranker", {})
# Configuration
self.model_name = self.reranker_config.get("name", "cross-encoder/ms-marco-MiniLM-L-6-v2")
self.max_seq_length = self.reranker_config.get("max_seq_length", 512)
self.batch_size = self.reranker_config.get("batch_size", 16)
self.enabled = self.reranker_config.get("enabled", True)
self.device = self._get_device()
# Model components
self.tokenizer: Optional[AutoTokenizer] = None
self.model: Optional[AutoModelForSequenceClassification] = None
self._model_loaded = False
# Performance tracking
self.stats = {
"reranking_operations": 0,
"total_pairs_scored": 0,
"total_time": 0,
"model_load_time": 0,
"avg_batch_size": 0
}
def _get_device(self) -> str:
"""Determine the best device for computation."""
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available(): # Apple Silicon
return "mps"
else:
return "cpu"
def _load_model(self) -> None:
"""Lazy load the cross-encoder model."""
if not self.enabled:
print("Re-ranker is disabled in configuration")
return
if self._model_loaded:
return
try:
print(f"Loading re-ranker model: {self.model_name}")
start_time = time.time()
# Load tokenizer and model
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
# Move to device
if self.device != "cpu":
self.model = self.model.to(self.device)
# Set to evaluation mode
self.model.eval()
load_time = time.time() - start_time
self.stats["model_load_time"] = load_time
print(f"Re-ranker model loaded in {load_time:.2f}s on device: {self.device}")
self._model_loaded = True
except Exception as e:
print(f"Failed to load re-ranker model: {e}")
self.enabled = False
raise EmbeddingError(f"Failed to load re-ranker model: {str(e)}") from e
def rerank(
self,
query: str,
results: List[SearchResult],
top_k: int = None
) -> List[SearchResult]:
"""
Re-rank search results using cross-encoder scores.
Args:
query: Original search query
results: List of search results to re-rank
top_k: Number of top results to return after re-ranking
Returns:
Re-ranked list of SearchResult objects
"""
if not self.enabled or not results:
return results
if not query or not query.strip():
return results
start_time = time.time()
try:
# Load model if needed
self._load_model()
if not self._model_loaded:
print("Re-ranker model not available, returning original results")
return results
# Prepare query-document pairs
pairs = []
for result in results:
# Use content or a reasonable excerpt
content = result.content
if len(content) > 500: # Truncate very long content
content = content[:500] + "..."
pairs.append((query.strip(), content))
# Score pairs
scores = self._score_pairs(pairs)
# Normalize reranker scores to 0-1 range
if scores and len(scores) > 0:
min_score = min(scores)
max_score = max(scores)
if max_score > min_score:
# Normalize to 0-1 range
normalized_scores = [(score - min_score) / (max_score - min_score) for score in scores]
else:
# All scores are the same, set to 0.5
normalized_scores = [0.5] * len(scores)
else:
normalized_scores = scores
# Update results with re-ranking scores
reranked_results = []
for i, result in enumerate(results):
# Create new result with updated scores
reranked_result = SearchResult(
chunk_id=result.chunk_id,
content=result.content,
metadata=result.metadata,
vector_score=result.vector_score,
bm25_score=result.bm25_score,
final_score=float(normalized_scores[i]), # Use normalized re-ranker score
rank=0 # Will be updated after sorting
)
reranked_results.append(reranked_result)
# Sort by re-ranking scores
reranked_results.sort(key=lambda x: x.final_score, reverse=True)
# Update ranks
for i, result in enumerate(reranked_results):
result.rank = i + 1
# Apply top_k limit
if top_k is not None:
reranked_results = reranked_results[:top_k]
# Update statistics
reranking_time = time.time() - start_time
self.stats["reranking_operations"] += 1
self.stats["total_pairs_scored"] += len(pairs)
self.stats["total_time"] += reranking_time
return reranked_results
except Exception as e:
print(f"Re-ranking failed, returning original results: {e}")
return results
def _score_pairs(self, pairs: List[Tuple[str, str]]) -> np.ndarray:
"""Score query-document pairs using the cross-encoder."""
if not pairs:
return np.array([])
scores = []
# Process in batches
for i in range(0, len(pairs), self.batch_size):
batch_pairs = pairs[i:i + self.batch_size]
batch_scores = self._score_batch(batch_pairs)
scores.extend(batch_scores)
return np.array(scores)
def _score_batch(self, batch_pairs: List[Tuple[str, str]]) -> List[float]:
"""Score a batch of query-document pairs."""
try:
# Prepare inputs
queries = [pair[0] for pair in batch_pairs]
documents = [pair[1] for pair in batch_pairs]
# Tokenize
inputs = self.tokenizer(
queries,
documents,
padding=True,
truncation=True,
max_length=self.max_seq_length,
return_tensors="pt"
)
# Move to device
if self.device != "cpu":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Get predictions
with torch.no_grad():
outputs = self.model(**inputs)
# Get logits and convert to scores
logits = outputs.logits
# For binary classification models, use sigmoid on logits
# For regression models, use logits directly
if logits.size(-1) == 1:
# Regression output
scores = logits.squeeze(-1).cpu().numpy()
else:
# Classification output - use positive class probability
probs = torch.softmax(logits, dim=-1)
scores = probs[:, 1].cpu().numpy() # Positive class
return scores.tolist()
except torch.cuda.OutOfMemoryError as e:
raise ResourceError(
"GPU memory insufficient for re-ranking. "
"Try reducing batch_size or using CPU."
) from e
except Exception as e:
raise EmbeddingError(f"Failed to score batch: {str(e)}") from e
def score_single_pair(self, query: str, document: str) -> float:
"""Score a single query-document pair."""
if not self.enabled or not query.strip() or not document.strip():
return 0.0
try:
scores = self._score_pairs([(query, document)])
return float(scores[0]) if len(scores) > 0 else 0.0
except Exception as e:
print(f"Failed to score single pair: {e}")
return 0.0
def warmup(self) -> None:
"""Warm up the re-ranker with a sample query-document pair."""
if not self.enabled:
return
self._load_model()
if not self._model_loaded:
return
# Run a sample prediction to warm up
sample_pairs = [("sample query", "sample document text")]
try:
self._score_pairs(sample_pairs)
print("Re-ranker model warmed up successfully")
except Exception as e:
print(f"Re-ranker warmup failed: {e}")
def get_stats(self) -> Dict[str, Any]:
"""Get re-ranker performance statistics."""
stats = self.stats.copy()
if stats["reranking_operations"] > 0:
stats["avg_time_per_operation"] = stats["total_time"] / stats["reranking_operations"]
stats["avg_pairs_per_operation"] = stats["total_pairs_scored"] / stats["reranking_operations"]
else:
stats["avg_time_per_operation"] = 0
stats["avg_pairs_per_operation"] = 0
if stats["total_pairs_scored"] > 0:
stats["avg_time_per_pair"] = stats["total_time"] / stats["total_pairs_scored"]
else:
stats["avg_time_per_pair"] = 0
stats["model_loaded"] = self._model_loaded
stats["enabled"] = self.enabled
stats["device"] = self.device
stats["model_name"] = self.model_name
return stats
def unload_model(self) -> None:
"""Unload the model to free memory."""
if self.model is not None:
del self.model
del self.tokenizer
self.model = None
self.tokenizer = None
self._model_loaded = False
# Clear GPU cache if using CUDA
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Re-ranker model unloaded")
def is_available(self) -> bool:
"""Check if re-ranker is available and enabled."""
return self.enabled and self._model_loaded
class RerankingPipeline:
"""Pipeline for applying re-ranking with fallback options."""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.search_config = config.get("search", {})
# Re-ranking configuration
self.rerank_top_k = self.search_config.get("rerank_top_k", 50)
self.final_top_k = self.search_config.get("final_top_k", 10)
self.enable_reranking = config.get("models", {}).get("reranker", {}).get("enabled", True)
# Initialize re-ranker
self.reranker = CrossEncoderReranker(config) if self.enable_reranking else None
# Statistics
self.stats = {
"pipeline_calls": 0,
"reranking_applied": 0,
"fallback_used": 0,
"avg_input_results": 0,
"avg_output_results": 0
}
def process(
self,
query: str,
results: List[SearchResult],
apply_reranking: bool = True
) -> List[SearchResult]:
"""
Process search results through the re-ranking pipeline.
Args:
query: Original search query
results: Search results to process
apply_reranking: Whether to apply re-ranking
Returns:
Processed results (re-ranked if enabled and successful)
"""
if not results:
return results
start_input_count = len(results)
self.stats["pipeline_calls"] += 1
self.stats["avg_input_results"] = (
(self.stats["avg_input_results"] * (self.stats["pipeline_calls"] - 1) + start_input_count)
/ self.stats["pipeline_calls"]
)
# Apply re-ranking if enabled and requested
if (apply_reranking and
self.enable_reranking and
self.reranker is not None and
len(results) > 1):
try:
# Limit candidates for re-ranking to improve performance
candidates = results[:self.rerank_top_k]
# Apply re-ranking
reranked_results = self.reranker.rerank(query, candidates)
# Combine with remaining results if any
if len(results) > self.rerank_top_k:
remaining_results = results[self.rerank_top_k:]
# Adjust ranks for remaining results
for i, result in enumerate(remaining_results):
result.rank = len(reranked_results) + i + 1
final_results = reranked_results + remaining_results
else:
final_results = reranked_results
self.stats["reranking_applied"] += 1
except Exception as e:
print(f"Re-ranking failed, using original results: {e}")
final_results = results
self.stats["fallback_used"] += 1
else:
final_results = results
# Apply final top-k limit
final_results = final_results[:self.final_top_k]
# Update output statistics
output_count = len(final_results)
self.stats["avg_output_results"] = (
(self.stats["avg_output_results"] * (self.stats["pipeline_calls"] - 1) + output_count)
/ self.stats["pipeline_calls"]
)
return final_results
def get_stats(self) -> Dict[str, Any]:
"""Get pipeline statistics."""
stats = self.stats.copy()
if self.reranker:
stats["reranker_stats"] = self.reranker.get_stats()
stats["reranking_enabled"] = self.enable_reranking
stats["rerank_top_k"] = self.rerank_top_k
stats["final_top_k"] = self.final_top_k
if stats["pipeline_calls"] > 0:
stats["reranking_success_rate"] = stats["reranking_applied"] / stats["pipeline_calls"]
stats["fallback_rate"] = stats["fallback_used"] / stats["pipeline_calls"]
else:
stats["reranking_success_rate"] = 0
stats["fallback_rate"] = 0
return stats
def warmup(self) -> None:
"""Warm up the re-ranking pipeline."""
if self.reranker:
self.reranker.warmup()
def unload_models(self) -> None:
"""Unload re-ranker models to free memory."""
if self.reranker:
self.reranker.unload_model() |