Spaces:
Running
Running
File size: 35,489 Bytes
11d9dfb 071c754 11d9dfb 071c754 11d9dfb 071c754 11d9dfb 071c754 11d9dfb 071c754 11d9dfb c0310a8 11d9dfb f7c2b86 11d9dfb b25e456 11d9dfb b25e456 11d9dfb b25e456 11d9dfb b25e456 11d9dfb bdb85c2 11d9dfb bdb85c2 11d9dfb bdb85c2 11d9dfb 5e2e4e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
"""
Hybrid search engine combining vector similarity and BM25 keyword search.
"""
import re
import time
from typing import Any, Dict, List, Optional, Tuple, Set
import numpy as np
from rank_bm25 import BM25Okapi
from collections import defaultdict, Counter
import string
from .error_handler import SearchError
from .vector_store import VectorStore
from .document_processor import DocumentChunk
class SearchResult:
"""Represents a search result with scoring details."""
def __init__(
self,
chunk_id: str,
content: str,
metadata: Dict[str, Any],
vector_score: float = 0.0,
bm25_score: float = 0.0,
final_score: float = 0.0,
rank: int = 0
):
self.chunk_id = chunk_id
self.content = content
self.metadata = metadata
self.vector_score = vector_score
self.bm25_score = bm25_score
self.final_score = final_score
self.rank = rank
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary representation."""
return {
"chunk_id": self.chunk_id,
"content": self.content,
"metadata": self.metadata,
"scores": {
"vector_score": self.vector_score,
"bm25_score": self.bm25_score,
"final_score": self.final_score
},
"rank": self.rank
}
class HybridSearchEngine:
"""Hybrid search engine combining vector similarity and BM25 keyword search."""
def __init__(self, config: Dict[str, Any], vector_store: VectorStore):
self.config = config
self.search_config = config.get("search", {})
self.vector_store = vector_store
# Search parameters
self.default_k = self.search_config.get("default_k", 10)
self.max_k = self.search_config.get("max_k", 20)
self.vector_weight = self.search_config.get("vector_weight", 0.7)
self.bm25_weight = self.search_config.get("bm25_weight", 0.3)
# BM25 setup
self.bm25_index: Optional[BM25Okapi] = None
self.bm25_corpus: List[List[str]] = []
self.chunk_id_to_index: Dict[str, int] = {}
self.index_to_chunk_id: Dict[int, str] = {}
self._bm25_built = False
# Query processing
self.stopwords = self._load_stopwords()
# Statistics
self.stats = {
"searches_performed": 0,
"total_search_time": 0,
"vector_searches": 0,
"bm25_searches": 0,
"hybrid_searches": 0,
"avg_results_returned": 0,
"bm25_index_size": 0
}
def _load_stopwords(self) -> Set[str]:
"""Load common English stopwords."""
# Basic English stopwords - could be enhanced with NLTK
return {
'a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'for', 'from',
'has', 'he', 'in', 'is', 'it', 'its', 'of', 'on', 'that', 'the',
'to', 'was', 'will', 'with', 'had', 'have', 'this', 'these', 'they',
'been', 'their', 'said', 'each', 'which', 'she', 'do', 'how', 'her',
'my', 'me', 'we', 'us', 'our', 'you', 'your', 'him', 'his', 'all'
}
def build_bm25_index(self, chunks: List[DocumentChunk]) -> None:
"""Build BM25 index from document chunks."""
if not chunks:
self.bm25_index = None
self.bm25_corpus = []
self.chunk_id_to_index = {}
self.index_to_chunk_id = {}
self._bm25_built = False
return
try:
print(f"Building BM25 index for {len(chunks)} chunks...")
start_time = time.time()
# Reset index data
self.bm25_corpus = []
self.chunk_id_to_index = {}
self.index_to_chunk_id = {}
# Process chunks
for i, chunk in enumerate(chunks):
# Tokenize content
tokens = self._tokenize_text(chunk.content)
# Validate tokens
if not tokens:
print(f"Warning: Empty tokens for chunk {chunk.chunk_id}, using fallback")
tokens = ["content"]
# Store mappings
self.bm25_corpus.append(tokens)
self.chunk_id_to_index[chunk.chunk_id] = i
self.index_to_chunk_id[i] = chunk.chunk_id
# Validate corpus before building BM25
if not self.bm25_corpus:
print("Warning: No valid content for BM25 index")
self.bm25_index = None
self._bm25_built = False
return
# Check if any document is empty
empty_docs = [i for i, doc in enumerate(self.bm25_corpus) if not doc]
if empty_docs:
print(f"Warning: Found {len(empty_docs)} empty documents, fixing...")
for idx in empty_docs:
self.bm25_corpus[idx] = ["content"]
# Build BM25 index
self.bm25_index = BM25Okapi(self.bm25_corpus)
self._bm25_built = True
build_time = time.time() - start_time
self.stats["bm25_index_size"] = len(self.bm25_corpus)
print(f"BM25 index built in {build_time:.2f}s with {len(self.bm25_corpus)} documents")
except Exception as e:
raise SearchError(f"Failed to build BM25 index: {str(e)}") from e
def _tokenize_text(self, text: str) -> List[str]:
"""Tokenize text for BM25 indexing."""
if not text or not text.strip():
return ["empty"] # Return a placeholder token for empty content
# Convert to lowercase
text = text.lower()
# Remove punctuation and split
text = re.sub(r'[^\w\s]', ' ', text)
tokens = text.split()
# Remove stopwords and very short tokens
tokens = [
token for token in tokens
if len(token) > 2 and token not in self.stopwords
]
# Ensure we never return empty token list (causes division by zero in BM25)
if not tokens:
tokens = ["content"] # Fallback token for content with no valid tokens
return tokens
def search(
self,
query: str,
k: int = None,
search_mode: str = "hybrid",
metadata_filter: Optional[Dict[str, Any]] = None,
vector_weight: float = None,
bm25_weight: float = None
) -> List[SearchResult]:
"""
Perform search using specified mode.
Args:
query: Search query
k: Number of results to return
search_mode: "vector", "bm25", or "hybrid"
metadata_filter: Optional metadata filter
vector_weight: Weight for vector scores (hybrid mode)
bm25_weight: Weight for BM25 scores (hybrid mode)
Returns:
List of SearchResult objects
"""
start_time = time.time()
# Validate parameters
k = k if k is not None else self.default_k
k = min(k, self.max_k)
if not query or not query.strip():
return []
query = query.strip()
try:
if search_mode == "vector":
results = self._vector_search(query, k, metadata_filter)
self.stats["vector_searches"] += 1
elif search_mode == "bm25":
results = self._bm25_search(query, k, metadata_filter)
self.stats["bm25_searches"] += 1
elif search_mode == "hybrid":
results = self._hybrid_search(
query, k, metadata_filter,
vector_weight or self.vector_weight,
bm25_weight or self.bm25_weight
)
self.stats["hybrid_searches"] += 1
else:
raise SearchError(f"Unknown search mode: {search_mode}")
# Update statistics
search_time = time.time() - start_time
self.stats["searches_performed"] += 1
self.stats["total_search_time"] += search_time
self.stats["avg_results_returned"] = (
(self.stats["avg_results_returned"] * (self.stats["searches_performed"] - 1) + len(results))
/ self.stats["searches_performed"]
)
return results
except Exception as e:
if isinstance(e, SearchError):
raise
else:
raise SearchError(f"Search failed: {str(e)}") from e
def _vector_search(
self,
query: str,
k: int,
metadata_filter: Optional[Dict[str, Any]]
) -> List[SearchResult]:
"""Perform vector similarity search."""
# Get embedding manager that was injected via set_embedding_manager
embedding_manager = getattr(self, '_embedding_manager', None)
if embedding_manager is None:
raise SearchError("Embedding manager not available for vector search")
# Generate query embedding
query_embeddings = embedding_manager.generate_embeddings([query], show_progress=False)
if query_embeddings.size == 0:
return []
query_embedding = query_embeddings[0]
# Search vector store
vector_results = self.vector_store.search(
query_embedding, k=k*2, metadata_filter=metadata_filter
)
# Convert to SearchResult objects
results = []
for i, (chunk_id, similarity, metadata) in enumerate(vector_results[:k]):
content = metadata.get("content", "")
# Debug: Log content info
if i < 3: # Only log first 3 results to avoid spam
content_preview = content[:100] + "..." if len(content) > 100 else content
print(f"Vector Result {i}: chunk_id={chunk_id}, content_length={len(content)}, preview='{content_preview}'")
result = SearchResult(
chunk_id=chunk_id,
content=content,
metadata=metadata,
vector_score=similarity,
bm25_score=0.0,
final_score=0.0, # Will be calculated after normalization
rank=i + 1
)
results.append(result)
# Normalize scores and calculate final scores for vector-only mode
if results:
self._normalize_scores(results)
for result in results:
result.final_score = result.vector_score # For vector-only, final = vector
return results
def _bm25_search(
self,
query: str,
k: int,
metadata_filter: Optional[Dict[str, Any]]
) -> List[SearchResult]:
"""Perform BM25 keyword search."""
if not self._bm25_built or self.bm25_index is None:
raise SearchError("BM25 index not built. Please add documents first.")
# Tokenize query
query_tokens = self._tokenize_text(query)
if not query_tokens:
return []
# Get BM25 scores
scores = self.bm25_index.get_scores(query_tokens)
# Get top k indices
top_indices = np.argsort(scores)[::-1][:k*3] # Get more for filtering
# Convert to results and apply metadata filter
results = []
for i, idx in enumerate(top_indices):
if len(results) >= k:
break
if idx >= len(self.index_to_chunk_id):
continue
chunk_id = self.index_to_chunk_id[idx]
score = float(scores[idx])
if score <= 0:
break
# Get chunk data from vector store
chunk_data = self.vector_store.get_by_id(chunk_id)
if chunk_data is None:
continue
_, metadata = chunk_data
content = metadata.get("content", "")
# Apply metadata filter
if metadata_filter and not self._matches_filter(metadata, metadata_filter):
continue
result = SearchResult(
chunk_id=chunk_id,
content=content,
metadata=metadata,
vector_score=0.0,
bm25_score=score,
final_score=0.0, # Will be calculated after normalization
rank=len(results) + 1
)
results.append(result)
# Normalize scores and calculate final scores for BM25-only mode
if results:
self._normalize_scores(results)
for result in results:
result.final_score = result.bm25_score # For BM25-only, final = bm25
return results
def _hybrid_search(
self,
query: str,
k: int,
metadata_filter: Optional[Dict[str, Any]],
vector_weight: float,
bm25_weight: float
) -> List[SearchResult]:
"""Perform hybrid search combining vector and BM25 results."""
# Get results from both methods
try:
vector_results = self._vector_search(query, k*2, metadata_filter)
except Exception as e:
print(f"Vector search failed: {e}")
vector_results = []
try:
bm25_results = self._bm25_search(query, k*2, metadata_filter)
except Exception as e:
print(f"BM25 search failed: {e}")
bm25_results = []
if not vector_results and not bm25_results:
return []
# Combine results by chunk_id
combined_results: Dict[str, SearchResult] = {}
# Add vector results
for result in vector_results:
combined_results[result.chunk_id] = SearchResult(
chunk_id=result.chunk_id,
content=result.content,
metadata=result.metadata,
vector_score=result.vector_score,
bm25_score=0.0,
final_score=0.0,
rank=0
)
# Add/merge BM25 results
for result in bm25_results:
if result.chunk_id in combined_results:
combined_results[result.chunk_id].bm25_score = result.bm25_score
else:
combined_results[result.chunk_id] = SearchResult(
chunk_id=result.chunk_id,
content=result.content,
metadata=result.metadata,
vector_score=0.0,
bm25_score=result.bm25_score,
final_score=0.0,
rank=0
)
# Normalize scores
self._normalize_scores(list(combined_results.values()))
# Calculate final hybrid scores
for result in combined_results.values():
result.final_score = (
vector_weight * result.vector_score +
bm25_weight * result.bm25_score
)
# Sort by final score and return top k
sorted_results = sorted(
combined_results.values(),
key=lambda x: x.final_score,
reverse=True
)
# Update ranks
for i, result in enumerate(sorted_results):
result.rank = i + 1
return sorted_results[:k]
def _normalize_scores(self, results: List[SearchResult]) -> None:
"""Normalize vector and BM25 scores to 0-1 range."""
if not results:
return
# Normalize vector scores (handle negative scores like cosine similarity)
vector_scores = [r.vector_score for r in results]
if vector_scores:
min_vector = min(vector_scores)
max_vector = max(vector_scores)
if max_vector > min_vector:
for result in results:
result.vector_score = (result.vector_score - min_vector) / (max_vector - min_vector)
elif max_vector == min_vector and max_vector != 0:
# All scores are the same, normalize to 0.5
for result in results:
result.vector_score = 0.5
# Normalize BM25 scores (these should be positive)
bm25_scores = [r.bm25_score for r in results if r.bm25_score > 0]
if bm25_scores:
min_bm25 = min(bm25_scores)
max_bm25 = max(bm25_scores)
if max_bm25 > min_bm25:
for result in results:
if result.bm25_score > 0:
result.bm25_score = (result.bm25_score - min_bm25) / (max_bm25 - min_bm25)
def _matches_filter(self, metadata: Dict[str, Any], filter_dict: Dict[str, Any]) -> bool:
"""Check if metadata matches filter (same as vector_store implementation)."""
for key, value in filter_dict.items():
if key not in metadata:
return False
metadata_value = metadata[key]
if isinstance(value, dict):
if "$gte" in value and metadata_value < value["$gte"]:
return False
if "$lte" in value and metadata_value > value["$lte"]:
return False
if "$in" in value and metadata_value not in value["$in"]:
return False
elif isinstance(value, list):
if metadata_value not in value:
return False
else:
if metadata_value != value:
return False
return True
def suggest_query_expansion(self, query: str, top_results: List[SearchResult]) -> List[str]:
"""Suggest query expansion terms based on top results."""
if not top_results:
return []
# Extract terms from top results
all_text = " ".join([result.content for result in top_results[:3]])
tokens = self._tokenize_text(all_text)
# Count term frequency
term_counts = Counter(tokens)
# Filter out query terms and get most frequent
query_tokens = set(self._tokenize_text(query))
suggestions = []
for term, count in term_counts.most_common(10):
if term not in query_tokens and len(term) > 3:
suggestions.append(term)
return suggestions[:5]
def get_stats(self) -> Dict[str, Any]:
"""Get search engine statistics."""
stats = self.stats.copy()
if stats["searches_performed"] > 0:
stats["avg_search_time"] = stats["total_search_time"] / stats["searches_performed"]
else:
stats["avg_search_time"] = 0
stats["bm25_index_built"] = self._bm25_built
stats["vector_store_stats"] = self.vector_store.get_stats()
return stats
def set_embedding_manager(self, embedding_manager) -> None:
"""Set the embedding manager for vector search."""
self._embedding_manager = embedding_manager
def optimize_index(self) -> Dict[str, Any]:
"""Optimize search indices."""
optimization_results = {}
# Optimize vector store
if self.vector_store:
vector_opt = self.vector_store.optimize()
optimization_results["vector_store"] = vector_opt
# Could add BM25 optimization here
optimization_results["bm25_index"] = {
"corpus_size": len(self.bm25_corpus),
"index_built": self._bm25_built
}
return optimization_results
class ConversationalSearchEngine(HybridSearchEngine):
"""Enhanced search engine with conversation context awareness."""
def __init__(self, config: Dict[str, Any], vector_store: "VectorStore"):
"""
Initialize conversational search engine.
Args:
config: Configuration dictionary
vector_store: Vector store instance (could be ConversationalVectorStore)
"""
super().__init__(config, vector_store)
# Conversation-specific configuration
self.conversation_config = config.get("conversation", {})
self.context_config = self.conversation_config.get("search", {})
# Context-aware search settings
self.context_boost_factor = self.context_config.get("context_boost_factor", 1.2)
self.history_decay_factor = self.context_config.get("history_decay_factor", 0.8)
self.entity_boost_factor = self.context_config.get("entity_boost_factor", 1.1)
self.topic_boost_factor = self.context_config.get("topic_boost_factor", 1.15)
# Enhanced statistics
self.conversation_stats = {
"contextual_searches": 0,
"context_enhanced_results": 0,
"entity_boosted_searches": 0,
"topic_boosted_searches": 0,
"conversation_history_used": 0
}
def search_with_conversation_context(
self,
query: str,
conversation_history: List[Dict[str, Any]] = None,
session_context: Dict[str, Any] = None,
mentioned_entities: List[str] = None,
active_topics: List[str] = None,
k: int = None,
search_mode: str = "hybrid",
metadata_filter: Optional[Dict[str, Any]] = None
) -> List[SearchResult]:
"""
Perform search enhanced with conversation context.
Args:
query: Search query
conversation_history: Recent conversation messages
session_context: Session-specific context
mentioned_entities: Entities mentioned in conversation
active_topics: Active conversation topics
k: Number of results to return
search_mode: Search mode ("vector", "bm25", "hybrid")
metadata_filter: Optional metadata filter
Returns:
List of SearchResult objects enhanced with context
"""
start_time = time.time()
try:
# Enhance query with conversation context
enhanced_query = self._enhance_query_with_context(
query, conversation_history, mentioned_entities, active_topics
)
# Perform base search with enhanced query
base_results = super().search(
query=enhanced_query,
k=k * 2 if k else self.default_k * 2, # Get more results for re-ranking
search_mode=search_mode,
metadata_filter=metadata_filter
)
# Apply conversation context scoring
context_enhanced_results = self._apply_conversation_context_scoring(
base_results,
conversation_history,
session_context,
mentioned_entities,
active_topics
)
# Re-rank based on context-enhanced scores
final_results = self._rerank_with_context(
context_enhanced_results, k or self.default_k
)
# Update conversation-specific statistics
search_time = time.time() - start_time
self.conversation_stats["contextual_searches"] += 1
if mentioned_entities:
self.conversation_stats["entity_boosted_searches"] += 1
if active_topics:
self.conversation_stats["topic_boosted_searches"] += 1
if conversation_history:
self.conversation_stats["conversation_history_used"] += 1
return final_results
except Exception as e:
# Fallback to regular search on error
return super().search(query, k, search_mode, metadata_filter)
def _enhance_query_with_context(
self,
query: str,
conversation_history: List[Dict[str, Any]] = None,
mentioned_entities: List[str] = None,
active_topics: List[str] = None
) -> str:
"""Enhance query with conversation context."""
enhanced_query = query
# Add entity context
if mentioned_entities:
# Add most recent entities as context
recent_entities = mentioned_entities[-3:] # Last 3 entities
entity_context = " ".join(recent_entities)
enhanced_query = f"{query} {entity_context}"
# Add topic context
if active_topics:
# Add most relevant topic
primary_topic = active_topics[0] if active_topics else None
if primary_topic and primary_topic.lower() not in query.lower():
enhanced_query = f"{enhanced_query} {primary_topic}"
# Add recent conversation context (extract key terms)
if conversation_history:
context_terms = self._extract_context_terms(conversation_history)
if context_terms:
# Add most relevant context terms not already in query
new_terms = [term for term in context_terms[:2]
if term.lower() not in enhanced_query.lower()]
if new_terms:
enhanced_query = f"{enhanced_query} {' '.join(new_terms)}"
return enhanced_query.strip()
def _extract_context_terms(self, conversation_history: List[Dict[str, Any]]) -> List[str]:
"""Extract key terms from conversation history."""
context_terms = []
# Look at recent user messages
for message in reversed(conversation_history[-5:]): # Last 5 messages
if message.get("role") == "user":
content = message.get("content", "")
# Extract meaningful terms (simple approach)
words = content.split()
meaningful_words = [
word.strip(".,!?;:") for word in words
if len(word) > 3 and word.lower() not in self.stopwords
]
context_terms.extend(meaningful_words[:3]) # Up to 3 terms per message
# Remove duplicates while preserving order
seen = set()
unique_terms = []
for term in context_terms:
if term.lower() not in seen:
seen.add(term.lower())
unique_terms.append(term)
return unique_terms[:5] # Return top 5 context terms
def _apply_conversation_context_scoring(
self,
results: List[SearchResult],
conversation_history: List[Dict[str, Any]] = None,
session_context: Dict[str, Any] = None,
mentioned_entities: List[str] = None,
active_topics: List[str] = None
) -> List[SearchResult]:
"""Apply conversation context to boost relevant results."""
enhanced_results = []
for result in results:
# Create a copy of the result
enhanced_result = SearchResult(
chunk_id=result.chunk_id,
content=result.content,
metadata=result.metadata.copy(),
vector_score=result.vector_score,
bm25_score=result.bm25_score,
final_score=result.final_score,
rank=result.rank
)
# Calculate context boost
context_boost = 1.0
# Entity matching boost
if mentioned_entities:
entity_matches = sum(
1 for entity in mentioned_entities
if entity.lower() in result.content.lower()
)
if entity_matches > 0:
context_boost *= (self.entity_boost_factor ** entity_matches)
# Topic matching boost
if active_topics:
topic_matches = sum(
1 for topic in active_topics
if topic.lower() in result.content.lower()
)
if topic_matches > 0:
context_boost *= (self.topic_boost_factor ** topic_matches)
# Conversation history relevance boost
if conversation_history:
history_boost = self._calculate_history_relevance(
result.content, conversation_history
)
context_boost *= history_boost
# Session context boost (e.g., document focus)
if session_context:
session_boost = self._calculate_session_relevance(
result, session_context
)
context_boost *= session_boost
# Apply context boost to final score
enhanced_result.final_score *= context_boost
# Store context information in metadata
enhanced_result.metadata["conversation_context"] = {
"context_boost": context_boost,
"entity_matches": entity_matches if mentioned_entities else 0,
"topic_matches": topic_matches if active_topics else 0,
"history_relevance": history_boost if conversation_history else 1.0
}
enhanced_results.append(enhanced_result)
if context_boost > 1.0:
self.conversation_stats["context_enhanced_results"] += 1
return enhanced_results
def _calculate_history_relevance(
self,
content: str,
conversation_history: List[Dict[str, Any]]
) -> float:
"""Calculate relevance boost based on conversation history."""
relevance_boost = 1.0
content_lower = content.lower()
# Check recent messages for term overlap
for i, message in enumerate(reversed(conversation_history[-5:])):
if message.get("role") == "user":
message_content = message.get("content", "").lower()
# Calculate term overlap
message_terms = set(message_content.split())
content_terms = set(content_lower.split())
overlap = len(message_terms.intersection(content_terms))
if overlap > 0:
# Apply decay factor based on message recency
decay = self.history_decay_factor ** i
boost = 1 + (0.1 * overlap * decay) # Modest boost per overlap term
relevance_boost *= boost
return min(relevance_boost, self.context_boost_factor) # Cap the boost
def _calculate_session_relevance(
self,
result: SearchResult,
session_context: Dict[str, Any]
) -> float:
"""Calculate relevance boost based on session context."""
boost = 1.0
# Document continuity boost
if "last_document" in session_context:
last_doc = session_context["last_document"]
current_doc = result.metadata.get("source", "")
if last_doc == current_doc:
boost *= 1.1 # Small boost for document continuity
# User preference boost
if "user_preferences" in session_context:
preferences = session_context["user_preferences"]
# Example: prefer recent documents
if preferences.get("prefer_recent", False):
timestamp = result.metadata.get("timestamp")
if timestamp:
# Simple recency boost (could be more sophisticated)
recency_factor = min(1.2, 1 + (time.time() - timestamp) / (30 * 24 * 3600)) # 30 days
boost *= recency_factor
return boost
def _rerank_with_context(self, results: List[SearchResult], k: int) -> List[SearchResult]:
"""Re-rank results based on context-enhanced scores."""
# Sort by context-enhanced final score
sorted_results = sorted(
results,
key=lambda x: x.final_score,
reverse=True
)
# Update ranks
for i, result in enumerate(sorted_results):
result.rank = i + 1
return sorted_results[:k]
def suggest_contextual_queries(
self,
conversation_history: List[Dict[str, Any]] = None,
mentioned_entities: List[str] = None,
active_topics: List[str] = None
) -> List[str]:
"""Generate contextual query suggestions based on conversation."""
suggestions = []
# Topic-based suggestions
if active_topics:
for topic in active_topics[:2]: # Top 2 topics
suggestions.append(f"Tell me more about {topic}")
suggestions.append(f"How does {topic} work?")
# Entity-based suggestions
if mentioned_entities:
for entity in mentioned_entities[-2:]: # Last 2 entities
suggestions.append(f"What is {entity}?")
suggestions.append(f"Explain {entity} in detail")
# History-based suggestions
if conversation_history:
last_user_message = None
for message in reversed(conversation_history):
if message.get("role") == "user":
last_user_message = message.get("content", "")
break
if last_user_message:
# Generate follow-up suggestions
suggestions.append(f"Can you elaborate on that?")
suggestions.append(f"What are the implications?")
suggestions.append(f"Are there any examples?")
# Remove duplicates and limit
unique_suggestions = []
seen = set()
for suggestion in suggestions:
if suggestion not in seen:
seen.add(suggestion)
unique_suggestions.append(suggestion)
return unique_suggestions[:5]
def get_conversation_stats(self) -> Dict[str, Any]:
"""Get conversation-specific search statistics."""
base_stats = super().get_stats()
base_stats.update(self.conversation_stats)
# Add derived metrics
if self.conversation_stats["contextual_searches"] > 0:
base_stats["context_enhancement_rate"] = (
self.conversation_stats["context_enhanced_results"] /
self.conversation_stats["contextual_searches"]
) * 100
return base_stats |