Spaces:
Running
Running
File size: 32,795 Bytes
11d9dfb f7c2b86 11d9dfb f7c2b86 11d9dfb 5e2e4e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
"""
In-memory vector store with efficient similarity search and metadata filtering.
"""
import pickle
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from dataclasses import dataclass, asdict
import json
import time
from .error_handler import ResourceError
from .document_processor import DocumentChunk
@dataclass
class VectorEntry:
"""Represents a vector entry with metadata."""
id: str
vector: np.ndarray
metadata: Dict[str, Any]
timestamp: float = None
def __post_init__(self):
if self.timestamp is None:
self.timestamp = time.time()
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary (excluding vector for serialization)."""
return {
"id": self.id,
"metadata": self.metadata,
"timestamp": self.timestamp,
"vector_shape": self.vector.shape,
"vector_dtype": str(self.vector.dtype)
}
class VectorStore:
"""In-memory vector store with efficient similarity search."""
def __init__(self, config: Dict[str, Any], embedding_dim: int = None):
self.config = config
self.embedding_dim = embedding_dim
# Storage
self._vectors: List[VectorEntry] = []
self._id_to_index: Dict[str, int] = {}
self._vector_matrix: Optional[np.ndarray] = None
self._matrix_dirty = True
# Configuration
self.cache_dir = Path(config.get("cache", {}).get("cache_dir", "./cache"))
self.auto_save = config.get("vector_store", {}).get("auto_save", True)
# Statistics
self.stats = {
"total_vectors": 0,
"searches_performed": 0,
"total_search_time": 0,
"last_update": None,
"memory_usage_mb": 0
}
def add_documents(self, chunks: List[DocumentChunk], embeddings: np.ndarray) -> List[str]:
"""
Add document chunks with their embeddings to the vector store.
Args:
chunks: List of document chunks
embeddings: Array of embeddings corresponding to chunks
Returns:
List of vector IDs that were added
"""
if len(chunks) != len(embeddings):
raise ValueError("Number of chunks must match number of embeddings")
if embeddings.size == 0:
return []
# Set embedding dimension if not set
if self.embedding_dim is None:
self.embedding_dim = embeddings.shape[1]
elif embeddings.shape[1] != self.embedding_dim:
raise ValueError(f"Embedding dimension {embeddings.shape[1]} doesn't match expected {self.embedding_dim}")
added_ids = []
for chunk, embedding in zip(chunks, embeddings):
# Create vector entry with content included in metadata
metadata_with_content = chunk.metadata.copy()
metadata_with_content['content'] = chunk.content # Add content to metadata
vector_entry = VectorEntry(
id=chunk.chunk_id,
vector=embedding.copy(),
metadata=metadata_with_content
)
# Add to store
if vector_entry.id in self._id_to_index:
# Update existing entry
index = self._id_to_index[vector_entry.id]
self._vectors[index] = vector_entry
else:
# Add new entry
self._id_to_index[vector_entry.id] = len(self._vectors)
self._vectors.append(vector_entry)
added_ids.append(vector_entry.id)
# Mark matrix as dirty for rebuild
self._matrix_dirty = True
# Update statistics
self._update_stats()
return added_ids
def search(
self,
query_embedding: np.ndarray,
k: int = 10,
metadata_filter: Optional[Dict[str, Any]] = None,
similarity_threshold: float = 0.0
) -> List[Tuple[str, float, Dict[str, Any]]]:
"""
Search for similar vectors.
Args:
query_embedding: Query vector
k: Number of results to return
metadata_filter: Optional metadata filter
similarity_threshold: Minimum similarity score
Returns:
List of (vector_id, similarity_score, metadata) tuples
"""
start_time = time.time()
if not self._vectors:
return []
# Ensure vector matrix is built
self._build_vector_matrix()
# Normalize query vector
query_norm = query_embedding / np.linalg.norm(query_embedding)
# Compute similarities
similarities = np.dot(self._vector_matrix, query_norm)
# Apply similarity threshold
valid_indices = np.where(similarities >= similarity_threshold)[0]
if len(valid_indices) == 0:
return []
# Get top k candidates (before metadata filtering)
candidate_k = min(len(valid_indices), k * 3) # Get more candidates for filtering
top_candidate_indices = valid_indices[np.argpartition(similarities[valid_indices], -candidate_k)[-candidate_k:]]
top_candidate_indices = top_candidate_indices[np.argsort(similarities[top_candidate_indices])[::-1]]
# Apply metadata filtering and collect results
results = []
for idx in top_candidate_indices:
if len(results) >= k:
break
vector_entry = self._vectors[idx]
# Apply metadata filter
if metadata_filter and not self._matches_filter(vector_entry.metadata, metadata_filter):
continue
results.append((
vector_entry.id,
float(similarities[idx]),
vector_entry.metadata.copy()
))
# Update statistics
search_time = time.time() - start_time
self.stats["searches_performed"] += 1
self.stats["total_search_time"] += search_time
return results
def _build_vector_matrix(self) -> None:
"""Build or rebuild the vector matrix for efficient search."""
if not self._matrix_dirty:
return
if not self._vectors:
self._vector_matrix = None
return
# Stack all vectors into a matrix
vectors = [entry.vector for entry in self._vectors]
self._vector_matrix = np.vstack(vectors)
# Normalize for cosine similarity
norms = np.linalg.norm(self._vector_matrix, axis=1, keepdims=True)
norms[norms == 0] = 1 # Avoid division by zero
self._vector_matrix = self._vector_matrix / norms
self._matrix_dirty = False
def _matches_filter(self, metadata: Dict[str, Any], filter_dict: Dict[str, Any]) -> bool:
"""Check if metadata matches the filter."""
for key, value in filter_dict.items():
if key not in metadata:
return False
metadata_value = metadata[key]
if isinstance(value, dict):
# Support for range filters, etc.
if "$gte" in value and metadata_value < value["$gte"]:
return False
if "$lte" in value and metadata_value > value["$lte"]:
return False
if "$in" in value and metadata_value not in value["$in"]:
return False
elif isinstance(value, list):
if metadata_value not in value:
return False
else:
if metadata_value != value:
return False
return True
def get_by_id(self, vector_id: str) -> Optional[Tuple[np.ndarray, Dict[str, Any]]]:
"""Get vector and metadata by ID."""
if vector_id not in self._id_to_index:
return None
index = self._id_to_index[vector_id]
entry = self._vectors[index]
return entry.vector.copy(), entry.metadata.copy()
def delete_by_id(self, vector_id: str) -> bool:
"""Delete vector by ID."""
if vector_id not in self._id_to_index:
return False
index = self._id_to_index[vector_id]
# Remove from vectors list
del self._vectors[index]
# Update index mapping
del self._id_to_index[vector_id]
for vid, idx in self._id_to_index.items():
if idx > index:
self._id_to_index[vid] = idx - 1
# Mark matrix as dirty
self._matrix_dirty = True
# Update statistics
self._update_stats()
return True
def delete_by_metadata(self, metadata_filter: Dict[str, Any]) -> int:
"""Delete vectors matching metadata filter."""
to_delete = []
for entry in self._vectors:
if self._matches_filter(entry.metadata, metadata_filter):
to_delete.append(entry.id)
deleted_count = 0
for vector_id in to_delete:
if self.delete_by_id(vector_id):
deleted_count += 1
return deleted_count
def clear(self) -> None:
"""Clear all vectors from the store."""
self._vectors.clear()
self._id_to_index.clear()
self._vector_matrix = None
self._matrix_dirty = True
self._update_stats()
def get_stats(self) -> Dict[str, Any]:
"""Get vector store statistics."""
stats = self.stats.copy()
if stats["searches_performed"] > 0:
stats["avg_search_time"] = stats["total_search_time"] / stats["searches_performed"]
else:
stats["avg_search_time"] = 0
# Memory usage estimation
memory_usage = 0
if self._vector_matrix is not None:
memory_usage += self._vector_matrix.nbytes
for entry in self._vectors:
memory_usage += entry.vector.nbytes
memory_usage += len(str(entry.metadata)) * 4 # Rough estimate
stats["memory_usage_mb"] = memory_usage / (1024 * 1024)
stats["embedding_dimension"] = self.embedding_dim
return stats
def _update_stats(self) -> None:
"""Update internal statistics."""
self.stats["total_vectors"] = len(self._vectors)
self.stats["last_update"] = time.time()
def save_to_disk(self, filepath: Optional[str] = None) -> str:
"""Save vector store to disk."""
if filepath is None:
self.cache_dir.mkdir(parents=True, exist_ok=True)
filepath = str(self.cache_dir / "vector_store.pkl")
# Prepare data for serialization
data = {
"embedding_dim": self.embedding_dim,
"vectors": [],
"stats": self.stats
}
for entry in self._vectors:
data["vectors"].append({
"id": entry.id,
"vector": entry.vector,
"metadata": entry.metadata,
"timestamp": entry.timestamp
})
try:
with open(filepath, "wb") as f:
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)
print(f"Vector store saved to {filepath}")
return filepath
except Exception as e:
raise ResourceError(f"Failed to save vector store: {str(e)}") from e
def load_from_disk(self, filepath: str) -> None:
"""Load vector store from disk."""
try:
with open(filepath, "rb") as f:
data = pickle.load(f)
# Clear current data
self.clear()
# Restore data
self.embedding_dim = data.get("embedding_dim")
self.stats = data.get("stats", {})
for vector_data in data.get("vectors", []):
entry = VectorEntry(
id=vector_data["id"],
vector=vector_data["vector"],
metadata=vector_data["metadata"],
timestamp=vector_data.get("timestamp", time.time())
)
self._id_to_index[entry.id] = len(self._vectors)
self._vectors.append(entry)
# Mark matrix as dirty for rebuild
self._matrix_dirty = True
print(f"Vector store loaded from {filepath} with {len(self._vectors)} vectors")
except Exception as e:
raise ResourceError(f"Failed to load vector store: {str(e)}") from e
def get_document_chunks(self, source_filter: Optional[str] = None) -> List[Dict[str, Any]]:
"""Get all document chunks, optionally filtered by source."""
chunks = []
for entry in self._vectors:
if source_filter is None or entry.metadata.get("source") == source_filter:
chunks.append({
"id": entry.id,
"content": entry.metadata.get("content", ""),
"metadata": entry.metadata
})
return chunks
def optimize(self) -> Dict[str, Any]:
"""Optimize the vector store."""
start_time = time.time()
# Rebuild vector matrix
self._build_vector_matrix()
# Could add more optimizations like:
# - Removing duplicate vectors
# - Compacting memory layout
# - Building additional indexes
optimization_time = time.time() - start_time
return {
"optimization_time": optimization_time,
"total_vectors": len(self._vectors),
"matrix_rebuilt": True
}
class ConversationalVectorStore(VectorStore):
"""Enhanced vector store with conversation context awareness."""
def __init__(self, config: Dict[str, Any], embedding_dim: int = None):
"""
Initialize conversational vector store.
Args:
config: Configuration dictionary
embedding_dim: Embedding dimension
"""
super().__init__(config, embedding_dim)
# Conversation-specific configuration
self.conversation_config = config.get("conversation", {})
self.context_config = self.conversation_config.get("vector_store", {})
# Context-aware retrieval settings
self.conversation_context_weight = self.context_config.get("context_weight", 0.1)
self.entity_embedding_cache = {} # Cache entity embeddings
self.topic_embedding_cache = {} # Cache topic embeddings
# Enhanced statistics
self.conversation_stats = {
"contextual_searches": 0,
"entity_enhanced_searches": 0,
"topic_enhanced_searches": 0,
"context_cache_hits": 0,
"context_cache_misses": 0
}
def retrieve_with_context(
self,
query_embedding: np.ndarray,
conversation_embeddings: List[np.ndarray] = None,
mentioned_entities: List[str] = None,
active_topics: List[str] = None,
conversation_history: List[Dict[str, Any]] = None,
k: int = 10,
metadata_filter: Optional[Dict[str, Any]] = None,
similarity_threshold: float = 0.0
) -> List[Tuple[str, float, Dict[str, Any]]]:
"""
Retrieve vectors with conversation context enhancement.
Args:
query_embedding: Query vector
conversation_embeddings: Embeddings from conversation history
mentioned_entities: Entities mentioned in conversation
active_topics: Active conversation topics
conversation_history: Recent conversation messages
k: Number of results to return
metadata_filter: Optional metadata filter
similarity_threshold: Minimum similarity score
Returns:
List of (vector_id, similarity_score, metadata) tuples enhanced with context
"""
start_time = time.time()
try:
# Enhance query embedding with conversation context
enhanced_query_embedding = self._enhance_query_embedding_with_context(
query_embedding,
conversation_embeddings,
mentioned_entities,
active_topics,
conversation_history
)
# Perform base retrieval with enhanced embedding
base_results = super().search(
query_embedding=enhanced_query_embedding,
k=k * 2, # Get more results for context re-ranking
metadata_filter=metadata_filter,
similarity_threshold=similarity_threshold
)
# Apply conversation context scoring
context_enhanced_results = self._apply_conversation_context_scoring(
base_results,
conversation_embeddings,
mentioned_entities,
active_topics,
conversation_history
)
# Re-rank and limit results
final_results = self._rerank_with_conversation_context(
context_enhanced_results, k
)
# Update conversation statistics
search_time = time.time() - start_time
self.conversation_stats["contextual_searches"] += 1
if mentioned_entities:
self.conversation_stats["entity_enhanced_searches"] += 1
if active_topics:
self.conversation_stats["topic_enhanced_searches"] += 1
return final_results
except Exception as e:
# Fallback to regular search on error
return super().search(query_embedding, k, metadata_filter, similarity_threshold)
def _enhance_query_embedding_with_context(
self,
query_embedding: np.ndarray,
conversation_embeddings: List[np.ndarray] = None,
mentioned_entities: List[str] = None,
active_topics: List[str] = None,
conversation_history: List[Dict[str, Any]] = None
) -> np.ndarray:
"""Enhance query embedding with conversation context."""
enhanced_embedding = query_embedding.copy()
# Add conversation history context
if conversation_embeddings:
# Weight recent conversation embeddings
context_vector = np.zeros_like(query_embedding)
for i, conv_embedding in enumerate(conversation_embeddings[-3:]): # Last 3
weight = self.conversation_context_weight * (0.8 ** i) # Decay factor
context_vector += weight * conv_embedding
# Blend with query embedding
enhanced_embedding = 0.9 * enhanced_embedding + 0.1 * context_vector
# Add entity context
if mentioned_entities:
entity_context = self._get_entity_context_vector(mentioned_entities)
if entity_context is not None:
enhanced_embedding = 0.95 * enhanced_embedding + 0.05 * entity_context
# Add topic context
if active_topics:
topic_context = self._get_topic_context_vector(active_topics)
if topic_context is not None:
enhanced_embedding = 0.95 * enhanced_embedding + 0.05 * topic_context
# Normalize the enhanced embedding
norm = np.linalg.norm(enhanced_embedding)
if norm > 0:
enhanced_embedding = enhanced_embedding / norm
return enhanced_embedding
def _get_entity_context_vector(self, entities: List[str]) -> Optional[np.ndarray]:
"""Get aggregated context vector for entities."""
if not entities or not self.embedding_dim:
return None
# Check cache first
entities_key = "|".join(sorted(entities))
if entities_key in self.entity_embedding_cache:
self.conversation_stats["context_cache_hits"] += 1
return self.entity_embedding_cache[entities_key]
self.conversation_stats["context_cache_misses"] += 1
# Find vectors that mention these entities
entity_vectors = []
for vector_entry in self._vectors:
content = vector_entry.metadata.get("content", "").lower()
# Check if any entity is mentioned in this content
entity_mentions = sum(1 for entity in entities if entity.lower() in content)
if entity_mentions > 0:
# Weight by number of entity mentions
weighted_vector = vector_entry.vector * entity_mentions
entity_vectors.append(weighted_vector)
if not entity_vectors:
return None
# Average the entity-related vectors
context_vector = np.mean(entity_vectors, axis=0)
# Cache the result
self.entity_embedding_cache[entities_key] = context_vector
return context_vector
def _get_topic_context_vector(self, topics: List[str]) -> Optional[np.ndarray]:
"""Get aggregated context vector for topics."""
if not topics or not self.embedding_dim:
return None
# Check cache first
topics_key = "|".join(sorted(topics))
if topics_key in self.topic_embedding_cache:
self.conversation_stats["context_cache_hits"] += 1
return self.topic_embedding_cache[topics_key]
self.conversation_stats["context_cache_misses"] += 1
# Find vectors that relate to these topics
topic_vectors = []
for vector_entry in self._vectors:
content = vector_entry.metadata.get("content", "").lower()
# Check if any topic is mentioned in this content
topic_mentions = sum(1 for topic in topics if topic.lower() in content)
if topic_mentions > 0:
# Weight by number of topic mentions
weighted_vector = vector_entry.vector * topic_mentions
topic_vectors.append(weighted_vector)
if not topic_vectors:
return None
# Average the topic-related vectors
context_vector = np.mean(topic_vectors, axis=0)
# Cache the result
self.topic_embedding_cache[topics_key] = context_vector
return context_vector
def _apply_conversation_context_scoring(
self,
results: List[Tuple[str, float, Dict[str, Any]]],
conversation_embeddings: List[np.ndarray] = None,
mentioned_entities: List[str] = None,
active_topics: List[str] = None,
conversation_history: List[Dict[str, Any]] = None
) -> List[Tuple[str, float, Dict[str, Any]]]:
"""Apply conversation context to boost relevant results."""
enhanced_results = []
for vector_id, similarity_score, metadata in results:
# Get the vector entry
vector_entry = None
if vector_id in self._id_to_index:
vector_entry = self._vectors[self._id_to_index[vector_id]]
if not vector_entry:
enhanced_results.append((vector_id, similarity_score, metadata))
continue
# Calculate context boost
context_boost = 1.0
content = metadata.get("content", "").lower()
# Entity context boost
if mentioned_entities:
entity_matches = sum(
1 for entity in mentioned_entities
if entity.lower() in content
)
if entity_matches > 0:
context_boost *= (1.1 ** entity_matches) # 10% boost per entity match
# Topic context boost
if active_topics:
topic_matches = sum(
1 for topic in active_topics
if topic.lower() in content
)
if topic_matches > 0:
context_boost *= (1.15 ** topic_matches) # 15% boost per topic match
# Conversation history similarity boost
if conversation_embeddings:
history_boost = self._calculate_conversation_similarity_boost(
vector_entry.vector, conversation_embeddings
)
context_boost *= history_boost
# Document continuity boost
if conversation_history:
continuity_boost = self._calculate_document_continuity_boost(
metadata, conversation_history
)
context_boost *= continuity_boost
# Apply context boost to similarity score
enhanced_score = similarity_score * context_boost
# Add context information to metadata
enhanced_metadata = metadata.copy()
enhanced_metadata["conversation_context"] = {
"context_boost": context_boost,
"entity_matches": sum(1 for entity in (mentioned_entities or [])
if entity.lower() in content),
"topic_matches": sum(1 for topic in (active_topics or [])
if topic.lower() in content),
"original_score": similarity_score,
"enhanced_score": enhanced_score
}
enhanced_results.append((vector_id, enhanced_score, enhanced_metadata))
return enhanced_results
def _calculate_conversation_similarity_boost(
self,
vector: np.ndarray,
conversation_embeddings: List[np.ndarray]
) -> float:
"""Calculate boost based on similarity to conversation history."""
if not conversation_embeddings:
return 1.0
# Calculate similarity to recent conversation embeddings
similarities = []
for conv_embedding in conversation_embeddings[-3:]: # Last 3
# Normalize vectors
vector_norm = vector / (np.linalg.norm(vector) + 1e-8)
conv_norm = conv_embedding / (np.linalg.norm(conv_embedding) + 1e-8)
# Calculate cosine similarity
similarity = np.dot(vector_norm, conv_norm)
similarities.append(similarity)
if similarities:
# Use max similarity with decay for older embeddings
max_similarity = max(similarities)
boost = 1.0 + (0.2 * max_similarity) # Up to 20% boost
return min(boost, 1.3) # Cap at 30% boost
return 1.0
def _calculate_document_continuity_boost(
self,
metadata: Dict[str, Any],
conversation_history: List[Dict[str, Any]]
) -> float:
"""Calculate boost for document continuity in conversation."""
current_source = metadata.get("source", "")
if not current_source or not conversation_history:
return 1.0
# Check if recent messages referenced the same document
recent_sources = []
for message in reversed(conversation_history[-5:]): # Last 5 messages
if message.get("role") == "assistant":
sources = message.get("sources", [])
for source in sources:
if isinstance(source, dict):
source_name = source.get("title", source.get("document_id", ""))
if source_name:
recent_sources.append(source_name)
# Check for document continuity
if current_source in recent_sources:
return 1.1 # 10% boost for document continuity
return 1.0
def _rerank_with_conversation_context(
self,
results: List[Tuple[str, float, Dict[str, Any]]],
k: int
) -> List[Tuple[str, float, Dict[str, Any]]]:
"""Re-rank results based on context-enhanced scores."""
# Sort by enhanced similarity score
sorted_results = sorted(
results,
key=lambda x: x[1], # Sort by similarity score
reverse=True
)
return sorted_results[:k]
def search_similar_in_conversation_context(
self,
vector_id: str,
conversation_embeddings: List[np.ndarray] = None,
k: int = 5
) -> List[Tuple[str, float, Dict[str, Any]]]:
"""Find similar vectors within conversation context."""
if vector_id not in self._id_to_index:
return []
# Get the reference vector
vector_entry = self._vectors[self._id_to_index[vector_id]]
reference_embedding = vector_entry.vector
# Use the reference embedding as query with conversation context
return self.retrieve_with_context(
query_embedding=reference_embedding,
conversation_embeddings=conversation_embeddings,
k=k
)
def get_conversation_stats(self) -> Dict[str, Any]:
"""Get conversation-specific vector store statistics."""
base_stats = super().get_stats()
base_stats.update(self.conversation_stats)
# Add derived metrics
if self.conversation_stats["contextual_searches"] > 0:
base_stats["entity_enhancement_rate"] = (
self.conversation_stats["entity_enhanced_searches"] /
self.conversation_stats["contextual_searches"]
) * 100
base_stats["topic_enhancement_rate"] = (
self.conversation_stats["topic_enhanced_searches"] /
self.conversation_stats["contextual_searches"]
) * 100
# Cache efficiency
total_cache_requests = (
self.conversation_stats["context_cache_hits"] +
self.conversation_stats["context_cache_misses"]
)
if total_cache_requests > 0:
base_stats["context_cache_hit_rate"] = (
self.conversation_stats["context_cache_hits"] / total_cache_requests
) * 100
base_stats["entity_cache_size"] = len(self.entity_embedding_cache)
base_stats["topic_cache_size"] = len(self.topic_embedding_cache)
return base_stats
def clear_conversation_cache(self) -> None:
"""Clear conversation-specific caches."""
self.entity_embedding_cache.clear()
self.topic_embedding_cache.clear()
def add_conversation_aware_documents(
self,
chunks: List[DocumentChunk],
embeddings: np.ndarray,
conversation_context: Dict[str, Any] = None
) -> List[str]:
"""
Add documents with conversation context awareness.
Args:
chunks: Document chunks to add
embeddings: Corresponding embeddings
conversation_context: Context from current conversation
Returns:
List of vector IDs that were added
"""
# Enhance metadata with conversation context
if conversation_context:
for chunk in chunks:
chunk.metadata["conversation_context"] = conversation_context.copy()
# Add conversation session info
if "session_id" in conversation_context:
chunk.metadata["session_id"] = conversation_context["session_id"]
# Add user context
if "user_id" in conversation_context:
chunk.metadata["user_id"] = conversation_context["user_id"]
# Use parent method to add documents
return super().add_documents(chunks, embeddings) |